Schulungshandbuch: Die Literaturliste
Literaturverzeichnis Modul 4
[1] Huang, W., Percie du Sert, N., Vollert, J., and Rice, A.S.C. (2020). General Principles of Preclinical Study Design. Handb Exp Pharmacol 257, 55-69. 10.1007/164_2019_277.
[2] Polson, A.G., and Fuji, R.N. (2012). The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cell-surface-targeted biological agents in patients. Br J Pharmacol 166, 1600-1602. 10.1111/j.1476-5381.2012.01916.x.
[3] Sun, D., Gao, W., Hu, H., and Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 12, 3049-3062. 10.1016/j.apsb.2022.02.002.
[4] Acha, V., Barefoot, B., Juarez Garcia, A., Lehner, V., Monno, R., Sandler, S., Spooner, A., and Verpillat, P. (2023). Principles for Good Practice in the Conduct of Non-interventional Studies: The View of Industry Researchers. Ther Innov Regul Sci 57, 1199-1208. 10.1007/s43441-023-00544-y.
[5] Camm, A.J., and Fox, K.A.A. (2018). Strengths and weaknesses of ‚real-world‘ studies involving non-vitamin K antagonist oral anticoagulants. Open Heart 5, e000788. 10.1136/openhrt-2018-000788.
[6] Kandi, V., and Vadakedath, S. (2023). Clinical Trials and Clinical Research: A Comprehensive Review. Cureus 15, e35077. 10.7759/cureus.35077.
[7] Umscheid, C.A., Margolis, D.J., and Grossman, C.E. (2011). Key concepts of clinical trials: a narrative review. Postgrad Med 123, 194-204. 10.3810/pgm.2011.09.2475.
[8] Sharma, H. (2021). Statistical significance or clinical significance? A researcher’s dilemma for appropriate interpretation of research results. Saudi J Anaesth 15, 431-434. 10.4103/sja.sja_158_21.
[9] Tavel, M.E. (2022). Nocebo vs Placebo Effects: Their Clinical Relevance. Am J Med 135, 1296-1299. 10.1016/j.amjmed.2022.06.007.
[10] klinisch getestet, klinisch geprüft, dermatologisch getestet, etc. (2024). https://label-online.de/label/klinisch-getestet-klinisch-geprueft-dermatologisch-getestet-etc/.
[11] Baethge, C. (2014). Evidenzbasierte Medizin: In der Versorgung angekommen, aber noch nicht heimisch. Dtsch Arztebl International 111, A-1636.
[12] Shane, A.L., Cabana, M.D., Vidry, S., Merenstein, D., Hummelen, R., Ellis, C.L., Heimbach, J.T., Hempel, S., Lynch, S.V., Sanders, M.E., and Tancredi, D.J. (2010). Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants. Gut Microbes 1, 243-253. 10.4161/gmic.1.4.12707.
[13] Flaherty, R.J. (2004). A simple method for evaluating the clinical literature. Fam Pract Manag 11, 47-52.
[14] Berger, V.W., and Alperson, S.Y. (2009). A general framework for the evaluation of clinical trial quality. Rev Recent Clin Trials 4, 79-88. 10.2174/157488709788186021.
[1] Hutchings, M.I., Truman, A.W., and Wilkinson, B. (2019). Antibiotics: past, present and future. Curr Opin Microbiol 51, 72-80. 10.1016/j.mib.2019.10.008.
[2] Pankey, G.A., and Sabath, L.D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38, 864-870. 10.1086/381972.
[3] Kapoor, G., Saigal, S., and Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 33, 300-305. 10.4103/joacp.JOACP_349_15.
[4] Neu, H.C., and Gootz, T.D. (1996). Antimicrobial Chemotherapy. In Medical Microbiology, S. Baron, ed. (University of Texas Medical Branch at Galveston
Copyright © 1996, The University of Texas Medical Branch at Galveston.).
[5] Mancuso, G., Midiri, A., Gerace, E., and Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 10. 10.3390/pathogens10101310.
[6] Kolár, M., Urbánek, K., and Látal, T. (2001). Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents 17, 357-363. 10.1016/s0924-8579(01)00317-x.
[7] Reygaert, W.C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4, 482-501. 10.3934/microbiol.2018.3.482.
[8] Jahresbericht Vancomycin-resistente Enterokokken in Deutschland. (2023). Epidemiologisches Bulletin
[9] Conly, J., and Johnston, B. (2005). Where are all the new antibiotics? The new antibiotic paradox. Can J Infect Dis Med Microbiol 16, 159-160. 10.1155/2005/892058.
[10] Skurnik, M. (2022). Can Bacteriophages Replace Antibiotics? Antibiotics (Basel) 11. 10.3390/antibiotics11050575.
[11] Browne, A.J., Chipeta, M.G., Haines-Woodhouse, G., Kumaran, E.P.A., Hamadani, B.H.K., Zaraa, S., Henry, N.J., Deshpande, A., Reiner, R.C., Jr., Day, N.P.J., et al. (2021). Global antibiotic consumption and usage in humans, 2000-18: a spatial modelling study. Lancet Planet Health 5, e893-e904. 10.1016/s2542-5196(21)00280-1.
[12] AURA (2021). AURA 2021: Fourth Australian report on antimicrobial use
and resistance in human health. https://www.safetyandquality.gov.au/sites/default/files/2021-09/aura_2021_-_report_-_final_accessible_pdf_-_for_web_publication.pdf.
[13] Konsum von Antibiotika in ausgewählten OECD-Ländern 2021 (2024). https://de.statista.com/statistik/daten/studie/153183/umfrage/konsum-von-antibiotika-in-ausgewaehlten-laendern/.
[14] European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA – Annual Epidemiological Report 2019. https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf.
[15] Timbrook, T.T., Hurst, J.M., and Bosso, J.A. (2016). Impact of an Antimicrobial Stewardship Program on Antimicrobial Utilization, Bacterial Susceptibilities, and Financial Expenditures at an Academic Medical Center. Hosp Pharm 51, 703-711. 10.1310/hpj5109-703.
[16] Scholle, O., Asendorf, M., Buck, C., Grill, S., Jones, C., Kollhorst, B., Riedel, O., Schüz, B., and Haug, U. (2022). Regional Variations in Outpatient Antibiotic Prescribing in Germany: A Small Area Analysis Based on Claims Data. Antibiotics 11, 836.
[17] Bratzler, D.W., Dellinger, E.P., Olsen, K.M., Perl, T.M., Auwaerter, P.G., Bolon, M.K., Fish, D.N., Napolitano, L.M., Sawyer, R.G., Slain, D., et al. (2013). Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 14, 73-156. 10.1089/sur.2013.9999.
[18] Lodi, G., Azzi, L., Varoni, E.M., Pentenero, M., Del Fabbro, M., Carrassi, A., Sardella, A., and Manfredi, M. (2021). Antibiotics to prevent complications following tooth extractions. Cochrane Database Syst Rev 2, Cd003811. 10.1002/14651858.CD003811.pub3.
[19] Institute for Quality and Efficiency in Health Care (IQWiG); Using medication: Learn More – Using antibiotics correctly and preventing resistance. https://www.ncbi.nlm.nih.gov/books/NBK361005/.
[20] Lupp, A. (2016). Orale Kontrazeptiva: Risikoreiche Interaktionen. Dtsch Arztebl International 113, [18].
[21] Kelly, S.A., Nzakizwanayo, J., Rodgers, A.M., Zhao, L., Weiser, R., Tekko, I.A., McCarthy, H.O., Ingram, R.J., Jones, B.V., Donnelly, R.F., and Gilmore, B.F. (2021). Antibiotic Therapy and the Gut Microbiome: Investigating the Effect of Delivery Route on Gut Pathogens. ACS Infect Dis 7, 1283-1296. 10.1021/acsinfecdis.1c00081.
[22] Kuriyama, T., Karasawa, T., and Williams, D.W. (2014). Chapter Thirteen – Antimicrobial Chemotherapy: Significance to Healthcare. In Biofilms in Infection Prevention and Control, S.L. Percival, D.W. Williams, J. Randle, and T. Cooper, eds. (Academic Press), pp. 209-244. https://doi.org/10.1016/B978-0-12-397043-5.00013-X.
[23] Levison, M.E., and Levison, J.H. (2009). Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 23, 791-815, vii. 10.1016/j.idc.2009.06.008.
[24] Xue, L., Ding, Y., Qin, Q., Liu, L., Ding, X., Zhou, Y., Liu, K., Singla, R.K., Shen, K., Din, A.U., et al. (2022). Assessment of the impact of intravenous antibiotics treatment on gut microbiota in patients: Clinical data from pre-and post-cardiac surgery. Front Cell Infect Microbiol 12, 1043971. 10.3389/fcimb.2022.1043971.
[25] Harrison, P.M., and Stewart, G.T. (1961). Excretion of antibiotics in bile. Br J Pharmacol Chemother 17, 420-423. 10.1111/j.1476-5381.1961.tb01128.x.
[26] Gough, E.K. (2022). The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infect Dis Poverty 11, 76. 10.1186/s40249-022-00999-5.
[27] Duan, H., Yu, L., Tian, F., Zhai, Q., Fan, L., and Chen, W. (2022). Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr 62, 1427-1452. 10.1080/10408398.2020.1843396.
[28] Fishbein, S.R.S., Mahmud, B., and Dantas, G. (2023). Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 21, 772-788. 10.1038/s41579-023-00933-y.
[29] Lange, K., Buerger, M., Stallmach, A., and Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases 34, 260-268. 10.1159/000443360.
[30] Lekang, K., Shekhar, S., Berild, D., Petersen, F.C., and Winther-Larsen, H.C. (2022). Effects of different amoxicillin treatment durations on microbiome diversity and composition in the gut. PLoS One 17, e0275737. 10.1371/journal.pone.0275737.
[31] Jernberg, C., Löfmark, S., Edlund, C., and Jansson, J.K. (2007). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. Isme j 1, 56-66. 10.1038/ismej.2007.3.
[32] Kesavelu, D., and Jog, P. (2023). Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis 10, 20499361231154443. 10.1177/20499361231154443.
[33] Faye, A.S., Allin, K.H., Iversen, A.T., Agrawal, M., Faith, J., Colombel, J.F., and Jess, T. (2023). Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. Gut 72, 663-670. 10.1136/gutjnl-2022-327845.
[34] Mamieva, Z., Poluektova, E., Svistushkin, V., Sobolev, V., Shifrin, O., Guarner, F., and Ivashkin, V. (2022). Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations? World J Gastroenterol 28, 1204-1219. 10.3748/wjg.v28.i12.1204.
[35] Duong, Q.A., Pittet, L.F., Curtis, N., and Zimmermann, P. (2022). Antibiotic exposure and adverse long-term health outcomes in children: A systematic review and meta-analysis. J Infect 85, 213-300. 10.1016/j.jinf.2022.01.005.
[36] McFarland, L.V. (1998). Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig Dis 16, 292-307. 10.1159/000016879.
[37] Zhang, L., Zeng, X., Guo, D., Zou, Y., Gan, H., and Huang, X. (2022). Early use of probiotics might prevent antibiotic-associated diarrhea in elderly (>65 years): a systematic review and meta-analysis. BMC Geriatr 22, 562. 10.1186/s12877-022-03257-3.
[38] Bruhn, C. (2016). Aufruhr im Darm. Empfehlungen und Grenzen der Selbstmedikation bei Antibiotika-assoziierter Diarrhö. Deutsche Apotheker Zeitung
[39] Sailer, S. (2019). Sailer Apotheken – Durchfall durch Antibiotika. https://sailers-apotheken.de/durchfall-durch-antibiotika/.
[40] Willing, B.P., Russell, S.L., and Finlay, B.B. (2011). Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol 9, 233-243. 10.1038/nrmicro2536.
[41] Bergogne-Bérézin, E. (2000). Treatment and prevention of antibiotic associated diarrhea. International Journal of Antimicrobial Agents 16, 521-526. https://doi.org/10.1016/S0924-8579(00)00293-4.
[42] Oizumi, K., Onuma, K., Watanabe, A., and Motomiya, M. (1989). Clinical study of drug fever induced by parenteral administration of antibiotics. Tohoku J Exp Med 159, 45-56. 10.1620/tjem.159.45.
[43] Daubitz, T. (2022). Nebenwirkung Fieber – Arzneimittel können die Körpertemperatur erhöhen. Deutsche Apotheker Zeitung
[44] Hennessen, G.M., Thilo; Schäffler, Arne (2019). Mundsoor. https://www.apotheken.de/krankheiten/4182-mundsoor.
[45] Chee, W.J.Y., Chew, S.Y., and Than, L.T.L. (2020). Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 19, 203. 10.1186/s12934-020-01464-4.
[46] Superti, F., and De Seta, F. (2020). Warding Off Recurrent Yeast and Bacterial Vaginal Infections: Lactoferrin and Lactobacilli. Microorganisms 8. 10.3390/microorganisms8010130.
[47] Wilton, L., Kollarova, M., Heeley, E., and Shakir, S. (2003). Relative risk of vaginal candidiasis after use of antibiotics compared with antidepressants in women: postmarketing surveillance data in England. Drug Saf 26, 589-597. 10.2165/00002018-200326080-00005.
[48] Abou Chacra, L., Fenollar, F., and Diop, K. (2021). Bacterial Vaginosis: What Do We Currently Know? Front Cell Infect Microbiol 11, 672429. 10.3389/fcimb.2021.672429.
[49] Bouza, E., Muñoz, P., and Alonso, R. (2005). Clinical manifestations, treatment and control of infections caused by Clostridium difficile. Clin Microbiol Infect 11 Suppl 4, 57-64. 10.1111/j.1469-0691.2005.01165.x.
[50] Bauer, M.P., Kuijper, E.J., and van Dissel, J.T. (2009). European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect 15, 1067-1079. 10.1111/j.1469-0691.2009.03099.x.
[51] Gould, C.V., and McDonald, L.C. (2008). Bench-to-bedside review: Clostridium difficile colitis. Crit Care 12, 203. 10.1186/cc6207.
[52] Lübbert, C., Zimmermann, L., Borchert, J., Hörner, B., Mutters, R., and Rodloff, A.C. (2016). Epidemiology and Recurrence Rates of Clostridium difficile Infections in Germany: A Secondary Data Analysis. Infect Dis Ther 5, 545-554. 10.1007/s40121-016-0135-9.
[53] Heimann, S.M., Vehreschild, J.J., Cornely, O.A., Wisplinghoff, H., Hallek, M., Goldbrunner, R., Böttiger, B.W., Goeser, T., Hölscher, A., Baldus, S., et al. (2015). Economic burden of Clostridium difficile associated diarrhoea: a cost-of-illness study from a German tertiary care hospital. Infection 43, 707-714. 10.1007/s15010-015-0810-x.
[54] Balsells, E., Shi, T., Leese, C., Lyell, I., Burrows, J., Wiuff, C., Campbell, H., Kyaw, M.H., and Nair, H. (2019). Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health 9, 010407. 10.7189/jogh.09.010407.
[55] Ausbruchsuntersuchungen bei Clostridium (Clostridioides) difficile. (2018). Epidemiologisches Bulletin
[56] Thackray, L.B., Handley, S.A., Gorman, M.J., Poddar, S., Bagadia, P., Briseño, C.G., Theisen, D.J., Tan, Q., Hykes, B.L., Jr., Lin, H., et al. (2018). Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 22, 3440-3453.e3446. 10.1016/j.celrep.2018.03.001.
[57] Watanabe, K., Gilchrist, C.A., Uddin, M.J., Burgess, S.L., Abhyankar, M.M., Moonah, S.N., Noor, Z., Donowitz, J.R., Schneider, B.N., Arju, T., et al. (2017). Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLoS Pathog 13, e1006513. 10.1371/journal.ppat.1006513.
[58] Patro-Golab, B., Shamir, R., and Szajewska, H. (2015). Yogurt for treating antibiotic-associated diarrhea: Systematic review and meta-analysis. Nutrition 31, 796-800. 10.1016/j.nut.2014.11.013.
[59] Hadjimbei, E., Botsaris, G., and Chrysostomou, S. (2022). Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 11. 10.3390/foods11172691.
[60] Chatterjee, S., Kar, P., Das, T., Ray, S., Gangulyt, S., Rajendiran, C., and Mitra, M. (2013). Randomised placebo-controlled double blind multicentric trial on efficacy and safety of Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 for prevention of antibiotic-associated diarrhoea. J Assoc Physicians India 61, 708-712.
[61] Cimperman, L., Bayless, G., Best, K., Diligente, A., Mordarski, B., Oster, M., Smith, M., Vatakis, F., Wiese, D., Steiber, A., and Katz, J. (2011). A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults. J Clin Gastroenterol 45, 785-789. 10.1097/MCG.0b013e3182166a42.
[62] Georgieva M, P.R., Rasheva N, Usheva N, Ivanova L, Koleva K. (2015). Use of the probiotic Lactobacillus reuteri DSM 17938 in the prevention of antibiotic-associated infections in hospitalized Bulgarian children: a randomized, controlled trial. J of IMAB 21, 895-900. 10.5272/jimab.2015214.895.
[63] Kołodziej, M., and Szajewska, H. (2019). Lactobacillus reuteri DSM 17938 in the prevention of antibiotic-associated diarrhoea in children: a randomized clinical trial. Clin Microbiol Infect 25, 699-704. 10.1016/j.cmi.2018.08.017.
[64] Vanderhoof, J.A., Whitney, D.B., Antonson, D.L., Hanner, T.L., Lupo, J.V., and Young, R.J. (1999). Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr 135, 564-568. 10.1016/s0022-3476(99)70053-3.
[65] Arvola, T., Laiho, K., Torkkeli, S., Mykkänen, H., Salminen, S., Maunula, L., and Isolauri, E. (1999). Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study. Pediatrics 104, e64. 10.1542/peds.104.5.e64.
[66] Esposito, C., Roberti, A., Turrà, F., Cerulo, M., Severino, G., Settimi, A., and Escolino, M. (2018). Frequency of Antibiotic-Associated Diarrhea and Related Complications in Pediatric Patients Who Underwent Hypospadias Repair: a Comparative Study Using Probiotics vs Placebo. Probiotics Antimicrob Proteins 10, 323-328. 10.1007/s12602-017-9324-4.
[67] Storr, M., and Stengel, A. (2021). [Systematic review: clinical evidence of probiotics in the prevention of antibiotic-associated diarrhoea]. MMW Fortschr Med 163, 19-26. 10.1007/s15006-021-9762-5.
[68] Szajewska, H., and Kołodziej, M. (2015). Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther 42, 1149-1157. 10.1111/apt.13404.
[69] Thomas, M.R., Litin, S.C., Osmon, D.R., Corr, A.P., Weaver, A.L., and Lohse, C.M. (2001). Lack of effect of Lactobacillus GG on antibiotic-associated diarrhea: a randomized, placebo-controlled trial. Mayo Clin Proc 76, 883-889. 10.4065/76.9.883.
[70] Ouwehand, A.C., DongLian, C., Weijian, X., Stewart, M., Ni, J., Stewart, T., and Miller, L.E. (2014). Probiotics reduce symptoms of antibiotic use in a hospital setting: a randomized dose response study. Vaccine 32, 458-463. 10.1016/j.vaccine.2013.11.053.
[71] Engelbrektson, A., Korzenik, J.R., Pittler, A., Sanders, M.E., Klaenhammer, T.R., Leyer, G., and Kitts, C.L. (2009). Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 58, 663-670. 10.1099/jmm.0.47615-0.
[72] Gao, X.W., Mubasher, M., Fang, C.Y., Reifer, C., and Miller, L.E. (2010). Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am J Gastroenterol 105, 1636-1641. 10.1038/ajg.2010.11.
[73] Maziade, P.J., Andriessen, J.A., Pereira, P., Currie, B., and Goldstein, E.J. (2013). Impact of adding prophylactic probiotics to a bundle of standard preventative measures for Clostridium difficile infections: enhanced and sustained decrease in the incidence and severity of infection at a community hospital. Curr Med Res Opin 29, 1341-1347. 10.1185/03007995.2013.833501.
[74] Maziade, P.J., Pereira, P., and Goldstein, E.J. (2015). A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+). Clin Infect Dis 60 Suppl 2, S144-147. 10.1093/cid/civ178.
[75] Maziade, P.J., Ship, N., Sniffen, J.C., and Goldstein, E.J.C. (2021). Enhanced Clostridioides difficile Infection Prevention With a Pharmacy-Controlled Policy That Adds a 3-Strain Lactobacillus Probiotic Concomitantly to Antibiotic Therapy. Clin Infect Dis 73, 1524-1527. 10.1093/cid/ciab414.
[76] Auclair, J., Frappier, M., and Millette, M. (2015). Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection. Clin Infect Dis 60 Suppl 2, S135-143. 10.1093/cid/civ179.
[77] Goldstein, E.J.C., Johnson, S.J., Maziade, P.J., Evans, C.T., Sniffen, J.C., Millette, M., and McFarland, L.V. (2017). Probiotics and prevention of Clostridium difficile infection. Anaerobe 45, 114-119. 10.1016/j.anaerobe.2016.12.007.
[78] BfArM (2018). Rote-Hand-Brief zu neuen Kontraindikationen von Saccharomyces boulardii (Saccharomyces cerevisiae HANSEN CBS 5926) bei schwerkranken oder immunsupprimierten Patienten. https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2018/rhb-saccharomyces_boulardii.html.
[79] Poncelet, A., Ruelle, L., Konopnicki, D., Miendje Deyi, V.Y., and Dauby, N. (2021). Saccharomyces cerevisiae fungemia: Risk factors, outcome and links with S. boulardii-containing probiotic administration. Infect Dis Now 51, 293-295. 10.1016/j.idnow.2020.12.003.
[80] Kabbani, T.A., Pallav, K., Dowd, S.E., Villafuerte-Galvez, J., Vanga, R.R., Castillo, N.E., Hansen, J., Dennis, M., Leffler, D.A., and Kelly, C.P. (2017). Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes 8, 17-32. 10.1080/19490976.2016.1267890.
[81] Spatz, M., Wang, Y., Lapiere, A., Da Costa, G., Michaudel, C., Danne, C., Michel, M.L., Langella, P., Sokol, H., and Richard, M.L. (2023). Saccharomyces boulardii CNCM I-745 supplementation during and after antibiotic treatment positively influences the bacterial gut microbiota. Front Med (Lausanne) 10, 1087715. 10.3389/fmed.2023.1087715.
[82] Hibbeler, B. (2016). Clostridium Difficile: Stuhltransplantation als Option. Dtsch Arztebl International 113, A-185.
[83] Albrecht, U., Müller, V., Schneider, B., and Stange, R. (2014). Efficacy and safety of a herbal medicinal product containing myrrh, chamomile and coffee charcoal for the treatment of gastrointestinal disorders: a non-interventional study. BMJ Open Gastroenterol 1, e000015. 10.1136/bmjgast-2014-000015.
[84] Weber, L., Kuck, K., Jürgenliemk, G., Heilmann, J., Lipowicz, B., and Vissiennon, C. (2020). Anti-Inflammatory and Barrier-Stabilising Effects of Myrrh, Coffee Charcoal and Chamomile Flower Extract in a Co-Culture Cell Model of the Intestinal Mucosa. Biomolecules 10. 10.3390/biom10071033.
[85] McRorie, J.W., Jr., and McKeown, N.M. (2017). Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J Acad Nutr Diet 117, 251-264. 10.1016/j.jand.2016.09.021.
[86] Olayanju, A., Mellor, D., Khatri, Y., and Pickles, N. (2023). The efficacy of fermented foods in the treatment and management of diarrhoeal diseases: A systematic review and meta-analysis. Nutr Health 29, 71-83. 10.1177/02601060221095678.
[87] Shan, L.S., Hou, P., Wang, Z.J., Liu, F.R., Chen, N., Shu, L.H., Zhang, H., Han, X.H., Han, X.X., Cai, X.X., et al. (2013). Prevention and treatment of diarrhoea with Saccharomyces boulardii in children with acute lower respiratory tract infections. Benef Microbes 4, 329-334. 10.3920/bm2013.0008.
[88] Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H., et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623-628. 10.1038/nature25979.
[89] Dhurjad, P., Dhavaliker, C., Gupta, K., and Sonti, R. (2022). Exploring Drug Metabolism by the Gut Microbiota: Modes of Metabolism and Experimental Approaches. Drug Metab Dispos 50, 224-234. 10.1124/dmd.121.000669.
[90] Stancu, A.L. (2018). Gut Microbiome and the Response to Immunotherapy in Cancer. Discoveries (Craiova) 6, e84. 10.15190/d.2018.4.
[1] de Laffolie, J. (2020). Epidemiologische Forschung und Behandlungsdatenanalyse zu chronisch-entzündlichen Darmerkrankungen. Monatsschrift Kinderheilkunde 168, 298-313.
[2] Hein, R., Köster, I., Bollschweiler, E., and Schubert, I. (2014). Prevalence of inflammatory bowel disease: estimates for 2010 and trends in Germany from a large insurance-based regional cohort. Scand J Gastroenterol 49, 1325-1335. 10.3109/00365521.2014.962605.
[3] Kucharzik, T., Dignass, A., Atreya, R., Bokemeyer, B., Esters, P., Herrlinger, K., Kannengiesser, K., Kienle, P., Langhorst, J., Lügering, A., et al. (2024). Aktualisierte S3-Leitlinie Colitis ulcerosa (Version 6.2). Z Gastroenterol 62, 769-858. 10.1055/a-2271-0994.
[4] Abraham, C., and Medzhitov, R. (2011). Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729-1737. 10.1053/j.gastro.2011.02.012.
[5] Zhang, Y.-Z., and Li, Y.-Y. (2014). Inflammatory bowel disease: pathogenesis. World journal of gastroenterology: WJG 20, 91.
[6] Scheubel, R. (2004). 13 Kolitiden–chronisch entzündliche Darmerkrankungen und andere Darmentzündungen. Lehratlas der Koloskopie: Das Referenzwerk zur Untersuchungstechnik und Befundinterpretation, 93.
[7] Baumgart, D.C. (2009). The diagnosis and treatment of Crohn’s disease and ulcerative colitis. Deutsches Ärzteblatt International 106, 123.
[8] Sturm, A., Atreya, R., Bettenworth, D., Bokemeyer, B., Dignaß, A., Ehehalt, R., Germer, C., Grunert, P.C., Helwig, U., and Herrlinger, K. (2022). Aktualisierte S3-Leitlinie „Diagnostik und Therapie des Morbus Crohn “der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS)–August 2021–AWMF-Registernummer: 021-004. Zeitschrift für Gastroenterologie 60, 332-418.
[9] Caparrós, E., Wiest, R., Scharl, M., Rogler, G., Gutiérrez Casbas, A., Yilmaz, B., Wawrzyniak, M., and Francés, R. (2021). Dysbiotic microbiota interactions in Crohn’s disease. Gut Microbes 13, 1949096. 10.1080/19490976.2021.1949096.
[10] Yu, S., Sun, Y., Shao, X., Zhou, Y., Yu, Y., Kuai, X., and Zhou, C. (2022). Leaky Gut in IBD: Intestinal Barrier–Gut Microbiota Interaction.
[11] Couturier-Maillard, A., Secher, T., Rehman, A., Normand, S., De Arcangelis, A., Haesler, R., Huot, L., Grandjean, T., Bressenot, A., Delanoye-Crespin, A., et al. (2013). NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123, 700-711. 10.1172/jci62236.
[12] Becker, C., Neurath, M.F., and Wirtz, S. (2015). The Intestinal Microbiota in Inflammatory Bowel Disease. Ilar j 56, 192-204. 10.1093/ilar/ilv030.
[13] Molodecky, N.A., and Kaplan, G.G. (2010). Environmental risk factors for inflammatory bowel disease. Gastroenterology & hepatology 6, 339.
[14] Parkes, G.C., Whelan, K., and Lindsay, J.O. (2014). Smoking in inflammatory bowel disease: impact on disease course and insights into the aetiology of its effect. J Crohns Colitis 8, 717-725. 10.1016/j.crohns.2014.02.002.
[15] Theochari, N.A., Stefanopoulos, A., Mylonas, K.S., and Economopoulos, K.P. (2018). Antibiotics exposure and risk of inflammatory bowel disease: a systematic review. Scandinavian Journal of Gastroenterology 53, 1-7. 10.1080/00365521.2017.1386711.
[16] Bach, S.P., and Mortensen, N.J. (2007). Ileal pouch surgery for ulcerative colitis. World journal of gastroenterology: WJG 13, 3288.
[17] Schieffer, K.M., Williams, E.D., Yochum, G.S., and Koltun, W.A. (2016). the pathogenesis of pouchitis. Alimentary pharmacology & therapeutics 44, 817-835.
[18] Costello, S.P., Hughes, P.A., Waters, O., Bryant, R.V., Vincent, A.D., Blatchford, P., Katsikeros, R., Makanyanga, J., Campaniello, M.A., Mavrangelos, C., et al. (2019). Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. Jama 321, 156-164. 10.1001/jama.2018.20046.
[19] Scazzocchio, B., Minghetti, L., and D’Archivio, M. (2020). Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 12. 10.3390/nu12092499.
[20] verlängert Remission, C. (2020). Curcumin verbessert Symptomatik bei Colitis ulcerosa. Ernährung & Medizin 35.
[21] Langhorst, J., Westendorf, A., Knott, M., Schneider, S., Goos, K., Albrecht, U., Rueffer, A., Stange, R., Michalsen, A., and Dobos, G. (2012). P281 Randomized, double-blind, double-dummy trial of myrrh, camomile and coffee charcoal compared to mesalazine in maintaining remission in ulcerative colitis. Journal of Crohn’s and Colitis 6, S121-S121.
[22] Omer, B., Krebs, S., Omer, H., and Noor, T. (2007). Steroid-sparing effect of wormwood (Artemisia absinthium) in Crohn’s disease: a double-blind placebo-controlled study. Phytomedicine 14, 87-95.
[23] Kafil, T.S., Nguyen, T.M., MacDonald, J.K., and Chande, N. (2018). Cannabis for the treatment of Crohn’s disease. Cochrane Database of Systematic Reviews.
[24] Godala, M., Gaszyńska, E., Zatorski, H., and Małecka-Wojciesko, E. (2022). Dietary interventions in inflammatory bowel disease. Nutrients 14, 4261.
[25] El-Rhman, A. (2022). The Impact of Flaxseed and Psyllium Seed Oils on Hemogram, Oxidative Stress and Inflammation in Ulcerative Colitis. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology 14, 337-352.
[26] Welters, C.F., Heineman, E., Thunnissen, F.B., van den Bogaard, A.E., Soeters, P.B., and Baeten, C.G. (2002). Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 45, 621-627. 10.1007/s10350-004-6257-2.
[27] Matthes, H., Krummenerl, T., Giensch, M., Wolff, C., and Schulze, J. (2010). Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN). BMC complementary and alternative medicine 10, 1-8.
[28] Cheng, F.S., Pan, D., Chang, B., Jiang, M., and Sang, L.X. (2020). Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases. World J Clin Cases 8, 1361-1384. 10.12998/wjcc.v8.i8.1361.
[29] Tursi, A., Brandimarte, G., Papa, A., Giglio, A., Elisei, W., Giorgetti, G.M., Forti, G., Morini, S., Hassan, C., Pistoia, M.A., et al. (2010). Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 105, 2218-2227. 10.1038/ajg.2010.218.
[30] Sood, A., Midha, V., Makharia, G.K., Ahuja, V., Singal, D., Goswami, P., and Tandon, R.K. (2009). The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol 7, 1202-1209, 1209.e1201. 10.1016/j.cgh.2009.07.016.
[31] Tursi, A., Brandimarte, G., Giorgetti, G.M., Forti, G., Modeo, M.E., and Gigliobianco, A. (2004). Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit 10, Pi126-131.
[32] Miele, E., Pascarella, F., Giannetti, E., Quaglietta, L., Baldassano, R.N., and Staiano, A. (2009). Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104, 437-443. 10.1038/ajg.2008.118.
[33] Gionchetti, P., Rizzello, F., Venturi, A., Brigidi, P., Matteuzzi, D., Bazzocchi, G., Poggioli, G., Miglioli, M., and Campieri, M. (2000). Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 305-309. 10.1053/gast.2000.9370.
[34] Caballero-Franco, C., Keller, K., De Simone, C., and Chadee, K. (2007). The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292, G315-322. 10.1152/ajpgi.00265.2006.
[35] Ng, S.C., Plamondon, S., Kamm, M.A., Hart, A.L., Al-Hassi, H.O., Guenther, T., Stagg, A.J., and Knight, S.C. (2010). Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm Bowel Dis 16, 1286-1298. 10.1002/ibd.21222.
[36] Limketkai, B.N., Akobeng, A.K., Gordon, M., and Adepoju, A.A. (2020). Probiotics for induction of remission in Crohn’s disease. Cochrane Database of Systematic Reviews. 10.1002/14651858.CD006634.pub3.
[37] Auer, I., Röder, A., and Mittelstaedt, A. (1985). Treatment of Crohn’s disease using Colibiogen. Cellular reactions of the immune system in patients with Crohn’s disease. Fortschritte der Medizin 103, 1076-1080.
[38] Schultz, M., Timmer, A., Herfarth, H.H., Sartor, R.B., Vanderhoof, J.A., and Rath, H.C. (2004). Lactobacillus GG in inducing and maintaining remission of Crohn’s disease. BMC Gastroenterol 4, 5. 10.1186/1471-230x-4-5.
[39] Steed, H., Macfarlane, G.T., Blackett, K.L., Bahrami, B., Reynolds, N., Walsh, S.V., Cummings, J.H., and Macfarlane, S. (2010). Clinical trial: the microbiological and immunological effects of synbiotic consumption – a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment Pharmacol Ther 32, 872-883. 10.1111/j.1365-2036.2010.04417.x.
[40] Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J.H., Walsh, S.V., O’Neil D, A., and Macfarlane, G.T. (2005). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54, 242-249. 10.1136/gut.2004.044834.
[41] Fedorak, R.N., Feagan, B.G., Hotte, N., Leddin, D., Dieleman, L.A., Petrunia, D.M., Enns, R., Bitton, A., Chiba, N., Paré, P., et al. (2015). The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin Gastroenterol Hepatol 13, 928-935.e922. 10.1016/j.cgh.2014.10.031.
[1] Layer, P., Andresen, V., Pehl, C., Allescher, H., Bischoff, S.C., Claßen, M., Enck, P., Frieling, T., Haag, S., and Holtmann, G. (2011). S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Verdauungs-und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM). Zeitschrift für Gastroenterologie 49, 237-293.
[2] Hanning, N., Edwinson, A.L., Ceuleers, H., Peters, S.A., De Man, J.G., Hassett, L.C., De Winter, B.Y., and Grover, M. (2021). Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Therapeutic Advances in Gastroenterology 14, 1756284821993586. 10.1177/1756284821993586.
[3] Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20, 145-155. 10.1038/nn.4476.
[4] Deidda, G., and Biazzo, M. (2021). Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 15, 753915. 10.3389/fnins.2021.753915.
[5] Mars, R.A.T., Yang, Y., Ward, T., Houtti, M., Priya, S., Lekatz, H.R., Tang, X., Sun, Z., Kalari, K.R., Korem, T., et al. (2020). Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell 182, 1460-1473.e1417. 10.1016/j.cell.2020.08.007.
[6] Bahrami, H.R., Hamedi, S., Salari, R., and Noras, M. (2016). Herbal Medicines for the Management of Irritable Bowel Syndrome: A Systematic Review. Electron Physician 8, 2719-2725. 10.19082/2719.
[7] Kavuri, V., Selvan, P., Malamud, A., Raghuram, N., and Selvan, S. (2015). Remedial Yoga Module Remarkably Improves Symptoms in Irritable Bowel Syndrome Patients: A 12-Week Randomized Controlled Trial. European Journal of Integrative Medicine 7. 10.1016/j.eujim.2015.11.001.
[8] Madison, A., and Kiecolt-Glaser, J.K. (2019). Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 28, 105-110. 10.1016/j.cobeha.2019.01.011.
[9] Bear, T., Dalziel, J., Coad, J., Roy, N., Butts, C., and Gopal, P. (2021). The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 9. 10.3390/microorganisms9040723.
[10] El-Salhy, M., Patcharatrakul, T., and Gonlachanvit, S. (2021). Fecal microbiota transplantation for irritable bowel syndrome: An intervention for the 21(st) century. World J Gastroenterol 27, 2921-2943. 10.3748/wjg.v27.i22.2921.
[11] Menees, S.B., Maneerattannaporn, M., Kim, H.M., and Chey, W.D. (2012). The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol 107, 28-35; quiz 36. 10.1038/ajg.2011.355.
[12] Pimentel, M., Lembo, A., Chey, W.D., Zakko, S., Ringel, Y., Yu, J., Mareya, S.M., Shaw, A.L., Bortey, E., and Forbes, W.P. (2011). Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 364, 22-32. 10.1056/NEJMoa1004409.
[13] Lembo, A., Pimentel, M., Rao, S.S., Schoenfeld, P., Cash, B., Weinstock, L.B., Paterson, C., Bortey, E., and Forbes, W.P. (2016). Repeat Treatment With Rifaximin Is Safe and Effective in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. Gastroenterology 151, 1113-1121. 10.1053/j.gastro.2016.08.003.
[14] Tap, J., Störsrud, S., Le Nevé, B., Cotillard, A., Pons, N., Doré, J., Öhman, L., Törnblom, H., Derrien, M., and Simrén, M. (2021). Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome 9, 74. 10.1186/s40168-021-01018-9.
[15] Hauner, H., Beyer-Reiners, E., Bischoff, G., Breidenassel, C., Ferschke, M., Gebhardt, A., Holzapfel, C., Lambeck, A., Meteling-Eeken, M., and Paul, C. (2019). Leitfaden Ernährungstherapie in Klinik und Praxis (LEKuP). Aktuelle Ernährungsmedizin 44, 384-419.
[16] Makki, K., Deehan, E.C., Walter, J., and Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23, 705-715. 10.1016/j.chom.2018.05.012.
[17] Buchbesprechung – Taschenatlas Ernährung. (2015). Aktuelle Ernährungsmedizin 40, 214-214. 10.1055/s-0035-1552221.
[18] Hill, P., Muir, J.G., and Gibson, P.R. (2017). Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol Hepatol (N Y) 13, 36-45.
[19] van Lanen, A.S., de Bree, A., and Greyling, A. (2021). Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: a systematic review and meta-analysis. Eur J Nutr 60, 3505-3522. 10.1007/s00394-020-02473-0.
[20] Vandeputte, D., and Joossens, M. (2020). Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 8. 10.3390/microorganisms8111638.
[21] Barrett, J.S. (2017). How to institute the low‐FODMAP diet. Journal of gastroenterology and hepatology 32, 8-10.
[22] Vasant, D.H., Paine, P.A., Black, C.J., Houghton, L.A., Everitt, H.A., Corsetti, M., Agrawal, A., Aziz, I., Farmer, A.D., Eugenicos, M.P., et al. (2021). British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut 70, 1214-1240. 10.1136/gutjnl-2021-324598.
[23] GUYONNET, D., CHASSANY, O., DUCROTTE, P., PICARD, C., MOURET, M., MERCIER, C.-H., and MATUCHANSKY, C. (2007). Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Alimentary Pharmacology & Therapeutics 26, 475-486. https://doi.org/10.1111/j.1365-2036.2007.03362.x.
[24] Agrawal, A., Houghton, L.A., Morris, J., Reilly, B., Guyonnet, D., Goupil Feuillerat, N., Schlumberger, A., Jakob, S., and Whorwell, P.J. (2009). Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther 29, 104-114. 10.1111/j.1365-2036.2008.03853.x.
[25] Krammer, H.J., Seggern, H., Schaumburg, J., and Neumer, F. (2011). Effect of Lactobacillus casei Shirota on colonic transit time in patients with chronic constipation. Coloproctology 33, 109-113. 10.1007/s00053-011-0177-0.
[26] Thijssen, A.Y., Clemens, C.H., Vankerckhoven, V., Goossens, H., Jonkers, D.M., and Masclee, A.A. (2016). Efficacy of Lactobacillus casei Shirota for patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol 28, 8-14. 10.1097/meg.0000000000000484.
[27] O’Mahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., O’Sullivan, G.C., Kiely, B., Collins, J.K., Shanahan, F., and Quigley, E.M. (2005). Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541-551. 10.1053/j.gastro.2004.11.050.
[28] Whorwell, P.J., Altringer, L., Morel, J., Bond, Y., Charbonneau, D., O’Mahony, L., Kiely, B., Shanahan, F., and Quigley, E.M. (2006). Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101, 1581-1590. 10.1111/j.1572-0241.2006.00734.x.
[29] Charbonneau, D., Gibb, R.D., and Quigley, E.M. (2013). Fecal excretion of Bifidobacterium infantis 35624 and changes in fecal microbiota after eight weeks of oral supplementation with encapsulated probiotic. Gut Microbes 4, 201-211. 10.4161/gmic.24196.
[30] Ringel-Kulka, T., McRorie, J., and Ringel, Y. (2017). Multi-Center, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study to Evaluate the Benefit of the Probiotic Bifidobacterium infantis 35624 in Non-Patients With Symptoms of Abdominal Discomfort and Bloating. Am J Gastroenterol 112, 145-151. 10.1038/ajg.2016.511.
[31] Guglielmetti, S., Mora, D., Gschwender, M., and Popp, K. (2011). Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life–a double-blind, placebo-controlled study. Aliment Pharmacol Ther 33, 1123-1132. 10.1111/j.1365-2036.2011.04633.x.
[32] Andresen, V., Gschossmann, J., and Layer, P. (2020). Heat-inactivated Bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: a multicentre, randomised, double-blind, placebo-controlled clinical trial. Lancet Gastroenterol Hepatol 5, 658-666. 10.1016/s2468-1253(20)30056-x.
[33] Enck, P., Zimmermann, K., Menke, G., and Klosterhalfen, S. (2009). Randomized Controlled Treatment Trial of Irritable Bowel Syndrome with a Probiotic E.-coli Preparation (DSM17252) Compared to Placebo. Zeitschrift für Gastroenterologie 47, 209-214. 10.1055/s-2008-1027702.
[34] Klug, K. (2007). Wirksamkeit und Verträglichkeit von E. coli Laves-Extrakt bei Kindern und Erwachsenen mit Reizdarmsyndrom. Erfahrungsheilkunde 56, 389-398.
[35] Pineton de Chambrun, G., Neut, C., Chau, A., Cazaubiel, M., Pelerin, F., Justen, P., and Desreumaux, P. (2015). A randomized clinical trial of Saccharomyces cerevisiae versus placebo in the irritable bowel syndrome. Dig Liver Dis 47, 119-124. 10.1016/j.dld.2014.11.007.
[36] Spiller, R., Pélerin, F., Cayzeele Decherf, A., Maudet, C., Housez, B., Cazaubiel, M., and Jüsten, P. (2016). Randomized double blind placebo-controlled trial of Saccharomyces cerevisiae CNCM I-3856 in irritable bowel syndrome: improvement in abdominal pain and bloating in those with predominant constipation. United European Gastroenterol J 4, 353-362. 10.1177/2050640615602571.
[37] Gayathri, R., Aruna, T., Malar, S., Shilpa, B., and Dhanasekar, K.R. (2020). Efficacy of Saccharomyces cerevisiae CNCM I-3856 as an add-on therapy for irritable bowel syndrome. Int J Colorectal Dis 35, 139-145. 10.1007/s00384-019-03462-4.
[38] Mourey, F., Decherf, A., Jeanne, J.F., Clément-Ziza, M., Grisoni, M.L., Machuron, F., Legrain-Raspaud, S., Bourreille, A., and Desreumaux, P. (2022). Saccharomyces cerevisiae I-3856 in irritable bowel syndrome with predominant constipation. World J Gastroenterol 28, 2509-2522. 10.3748/wjg.v28.i22.2509.
[39] Mezzasalma, V., Manfrini, E., Ferri, E., Sandionigi, A., La Ferla, B., Schiano, I., Michelotti, A., Nobile, V., Labra, M., and Di Gennaro, P. (2016). A Randomized, Double-Blind, Placebo-Controlled Trial: The Efficacy of Multispecies Probiotic Supplementation in Alleviating Symptoms of Irritable Bowel Syndrome Associated with Constipation. Biomed Res Int 2016, 4740907. 10.1155/2016/4740907.
[40] Mezzasalma, V., Manfrini, E., Ferri, E., Sandionigi, A., Ferla, B., Schiano, I., Michelotti, A., Nobile, V., Labra, M., and Di Gennaro, P. (2019). Corrigendum to „A Randomized, Double-Blind, Placebo-Controlled Trial: The Efficacy of Multispecies Probiotic Supplementation in Alleviating Symptoms of Irritable Bowel Syndrome Associated with Constipation“. Biomed Res Int 2019, 9042956. 10.1155/2019/9042956.
[41] Lorenzo-Zúñiga, V., Llop, E., Suárez, C., Alvarez, B., Abreu, L., Espadaler, J., and Serra, J. (2014). I.31, a new combination of probiotics, improves irritable bowel syndrome-related quality of life. World J Gastroenterol 20, 8709-8716. 10.3748/wjg.v20.i26.8709.
[42] Barraza-Ortiz, D.A., Pérez-López, N., Medina-López, V.M., Minero-Alfaro, J.I., Zamarripa-Dorsey, F., Fernández-Martínez, N.D.C., Llorente-Ramón, A., and Ramos-Aguilar, G.A. (2021). Combination of a Probiotic and an Antispasmodic Increases Quality of Life and Reduces Symptoms in Patients with Irritable Bowel Syndrome: A Pilot Study. Dig Dis 39, 294-300. 10.1159/000510950.
[43] Niedzielin, K., Kordecki, H., and Birkenfeld, B. (2001). A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol 13, 1143-1147. 10.1097/00042737-200110000-00004.
[44] Nobaek, S., Johansson, M.L., Molin, G., Ahrné, S., and Jeppsson, B. (2000). Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95, 1231-1238. 10.1111/j.1572-0241.2000.02015.x.
[45] Ducrotté, P., Sawant, P., and Jayanthi, V. (2012). Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol 18, 4012-4018. 10.3748/wjg.v18.i30.4012.
[46] Stevenson, C., Blaauw, R., Fredericks, E., Visser, J., and Roux, S. (2014). Randomized clinical trial: effect of Lactobacillus plantarum 299 v on symptoms of irritable bowel syndrome. Nutrition 30, 1151-1157. 10.1016/j.nut.2014.02.010.
[47] Krammer, H., Storr, M., Madisch, A., and Riffel, J. (2021). Reizdarmbehandlung mit Lactobacillus plantarum 299v: Längere Einnahme verstärkt Behandlungserfolg–Ergebnisse einer nichtinterventionellen Studie. Zeitschrift für Gastroenterologie 59, 125-134.
[1] Leifeld, L., Germer, C.-T., Böhm, S., Dumoulin, F.L., Frieling, T., Kreis, M., Meining, A., Labenz, J., Lock, J.F., and Ritz, J.-P. (2022). S3-leitlinie divertikelkrankheit/divertikulitis–gemeinsame leitlinie der deutschen gesellschaft für gastroenterologie, verdauungs-und stoffwechselkrankheiten (DGVS) und der deutschen gesellschaft für allgemein-und viszeralchirurgie (DGAV). Zeitschrift für Gastroenterologie 60, 613-688.
[2] Bassotti, G., Battaglia, E., Bellone, G., Dughera, L., Fisogni, S., Zambelli, C., Morelli, A., Mioli, P., Emanuelli, G., and Villanacci, V. (2005). Interstitial cells of Cajal, enteric nerves, and glial cells in colonic diverticular disease. J Clin Pathol 58, 973-977. 10.1136/jcp.2005.026112.
[3] Wedel, T., Büsing, V., Heinrichs, G., Nohroudi, K., Bruch, H.P., Roblick, U.J., and Böttner, M. (2010). Diverticular disease is associated with an enteric neuropathy as revealed by morphometric analysis. Neurogastroenterol Motil 22, 407-414, e493-404. 10.1111/j.1365-2982.2009.01445.x.
[4] Tursi, A., Scarpignato, C., Strate, L.L., Lanas, A., Kruis, W., Lahat, A., and Danese, S. (2020). Colonic diverticular disease. Nat Rev Dis Primers 6, 20. 10.1038/s41572-020-0153-5.
[5] Elisei, W., and Tursi, A. (2016). Recent advances in the treatment of colonic diverticular disease and prevention of acute diverticulitis. Ann Gastroenterol 29, 24-32.
[6] Maconi, G. (2017). Diagnosis of symptomatic uncomplicated diverticular disease and the role of Rifaximin in management. Acta Biomed 88, 25-32. 10.23750/abm.v88i1.6360.
[7] Spiller, R. (2012). Is it diverticular disease or is it irritable bowel syndrome? Dig Dis 30, 64-69. 10.1159/000335721.
[8] Alamo, R.Z., and Quigley, E.M.M. (2019). Irritable bowel syndrome and colonic diverticular disease: overlapping symptoms and overlapping therapeutic approaches. Curr Opin Gastroenterol 35, 27-33. 10.1097/mog.0000000000000499.
[9] Regenbogen, S.E., Hardiman, K.M., Hendren, S., and Morris, A.M. (2014). Surgery for diverticulitis in the 21st century: a systematic review. JAMA Surg 149, 292-303. 10.1001/jamasurg.2013.5477.
[10] Hjern, F., Johansson, C., Mellgren, A., Baxter, N.N., and Hjern, A. (2006). Diverticular disease and migration–the influence of acculturation to a Western lifestyle on diverticular disease. Aliment Pharmacol Ther 23, 797-805. 10.1111/j.1365-2036.2006.02805.x.
[11] Krokowicz, L., Stojcev, Z., Kaczmarek, B.F., Kociemba, W., Kaczmarek, E., Walkowiak, J., Krokowicz, P., Drews, M., and Banasiewicz, T. (2014). Microencapsulated sodium butyrate administered to patients with diverticulosis decreases incidence of diverticulitis–a prospective randomized study. Int J Colorectal Dis 29, 387-393. 10.1007/s00384-013-1807-5.
[12] van Rossen, T.M., Ooijevaar, R.E., Kuyvenhoven, J.P., Eck, A., Bril, H., Buijsman, R., Boermeester, M.A., Stockmann, H., de Korte, N., and Budding, A.E. (2021). Microbiota composition and mucosal immunity in patients with asymptomatic diverticulosis and controls. PLoS One 16, e0256657. 10.1371/journal.pone.0256657.
[13] Tursi, A., and Elisei, W. (2019). Role of Inflammation in the Pathogenesis of Diverticular Disease. Mediators Inflamm 2019, 8328490. 10.1155/2019/8328490.
[14] Ticinesi, A., Nouvenne, A., Corrente, V., Tana, C., Di Mario, F., and Meschi, T. (2019). Diverticular Disease: a Gut Microbiota Perspective. J Gastrointestin Liver Dis 28, 327-337. 10.15403/jgld-277.
[15] Barbara, G., Scaioli, E., Barbaro, M.R., Biagi, E., Laghi, L., Cremon, C., Marasco, G., Colecchia, A., Picone, G., Salfi, N., et al. (2017). Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut 66, 1252-1261. 10.1136/gutjnl-2016-312377.
[16] Tursi, A., Mastromarino, P., Capobianco, D., Elisei, W., Miccheli, A., Capuani, G., Tomassini, A., Campagna, G., Picchio, M., Giorgetti, G., et al. (2016). Assessment of Fecal Microbiota and Fecal Metabolome in Symptomatic Uncomplicated Diverticular Disease of the Colon. J Clin Gastroenterol 50 Suppl 1, S9-s12. 10.1097/mcg.0000000000000626.
[17] Bretto, E., D’Amico, F., Fiore, W., Tursi, A., and Danese, S. (2022). Lactobacillus paracasei CNCM I 1572: A Promising Candidate for Management of Colonic Diverticular Disease. J Clin Med 11. 10.3390/jcm11071916.
[18] Lahner, E., Bellisario, C., Hassan, C., Zullo, A., Esposito, G., and Annibale, B. (2016). Probiotics in the Treatment of Diverticular Disease. A Systematic Review. J Gastrointestin Liver Dis 25, 79-86. 10.15403/jgld.2014.1121.251.srw.
[19] Tursi, A., Brandimarte, G., Elisei, W., Picchio, M., Forti, G., Pianese, G., Rodino, S., D’Amico, T., Sacca, N., Portincasa, P., et al. (2013). Randomised clinical trial: mesalazine and/or probiotics in maintaining remission of symptomatic uncomplicated diverticular disease–a double-blind, randomised, placebo-controlled study. Aliment Pharmacol Ther 38, 741-751. 10.1111/apt.12463.
[20] Turco, F., Andreozzi, P., Palumbo, I., Zito, F.P., Cargiolli, M., Fiore, W., Gennarelli, N., De Palma, G.D., Sarnelli, G., and Cuomo, R. (2017). Bacterial stimuli activate nitric oxide colonic mucosal production in diverticular disease. Protective effects of L. casei DG® (Lactobacillus paracasei CNCM I-1572). United European Gastroenterol J 5, 715-724. 10.1177/2050640616684398.
[21] Carabotti, M., and Annibale, B. (2018). Treatment of diverticular disease: an update on latest evidence and clinical implications. Drugs Context 7, 212526. 10.7573/dic.212526.
[22] Bianchi, M., Festa, V., Moretti, A., Ciaco, A., Mangone, M., Tornatore, V., Dezi, A., Luchetti, R., De Pascalis, B., Papi, C., and Koch, M. (2011). Meta-analysis: long-term therapy with rifaximin in the management of uncomplicated diverticular disease. Alimentary Pharmacology & Therapeutics 33, 902-910. https://doi.org/10.1111/j.1365-2036.2011.04606.x.
[23] Papi, C., Ciaco, A., Koch, M., and Capurso, L. (1995). Efficacy of rifaximin in the treatment of symptomatic diverticular disease of the colon. A multicentre double-blind placebo-controlled trial. Aliment Pharmacol Ther 9, 33-39. 10.1111/j.1365-2036.1995.tb00348.x.
[24] Copaci, I., Constantinescu, G., Mihaila, M., Micu, L., and Franculescu-Bertea, A. (2019). Efficacy of Rifaximin-α vs Dietary Fiber on the Evolution of Uncomplicated Colonic Diverticular Disease. Surgery, Gastroenterology and Oncology 24, 233. 10.21614/sgo-24-5-233.
[25] Moniuszko, A., and Rydzewska, G. (2017). The effect of cyclic rifaximin therapy on symptoms of diverticular disease from the perspective of the gastroenterology outpatient clinic: a “real-life” study. Gastroenterology Review/Przegląd Gastroenterologiczny 12, 145-151. 10.5114/pg.2017.68167.
[26] Stallinger, S., Eller, N., and Högenauer, C. (2014). Non-interventional study evaluating efficacy and tolerability of rifaximin for treatment of uncomplicated diverticular disease. Wiener klinische Wochenschrift 126, 9-14. 10.1007/s00508-013-0447-7.
[27] Meyer, D.C., Hill, S.S., Bebinger, D.M., McDade, J.A., Davids, J.S., Alavi, K., and Maykel, J.A. (2020). Resolution of multiply recurrent and multifocal diverticulitis after fecal microbiota transplantation. Tech Coloproctol 24, 971-975. 10.1007/s10151-020-02275-w.
[28] Giacosa, A., Riva, A., Petrangolini, G., Allegrini, P., Fazia, T., Bernardinelli, L., Gasparri, C., Faliva, M.A., Peroni, G., Perna, S., and Rondanelli, M. (2020). Symptomatic uncomplicated diverticular disease management: an innovative food-grade formulation of Curcuma longa and Boswellia serrata extracts. Drugs Context 9. 10.7573/dic.2020-9-2.
[29] Crowe, F.L., Appleby, P.N., Allen, N.E., and Key, T.J. (2011). Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians. BMJ 343, d4131. 10.1136/bmj.d4131.
[30] Crowe, F.L., Balkwill, A., Cairns, B.J., Appleby, P.N., Green, J., Reeves, G.K., Key, T.J., and Beral, V. (2014). Source of dietary fibre and diverticular disease incidence: a prospective study of UK women. Gut 63, 1450-1456. 10.1136/gutjnl-2013-304644.
[31] Carabotti, M., Annibale, B., Severi, C., and Lahner, E. (2017). Role of Fiber in Symptomatic Uncomplicated Diverticular Disease: A Systematic Review. Nutrients 9. 10.3390/nu9020161.
[32] Ünlü, C., Daniels, L., Vrouenraets, B.C., and Boermeester, M.A. (2012). A systematic review of high-fibre dietary therapy in diverticular disease. Int J Colorectal Dis 27, 419-427. 10.1007/s00384-011-1308-3.
[1] Madisch, A., Andresen, V., Enck, P., Labenz, J., Frieling, T., and Schemann, M. (2018). The Diagnosis and Treatment of Functional Dyspepsia. Dtsch Arztebl Int 115, 222-232. 10.3238/arztebl.2018.0222.
[2] Wauters, L., Dickman, R., Drug, V., Mulak, A., Serra, J., Enck, P., Tack, J., Accarino, A., Barbara, G., Bor, S., et al. (2021). United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United European Gastroenterol J 9, 307-331. 10.1002/ueg2.12061.
[3] Wauters, L., Talley, N.J., Walker, M.M., Tack, J., and Vanuytsel, T. (2020). Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 69, 591-600. 10.1136/gutjnl-2019-318536.
[4] Nojkov, B., Zhou, S.Y., Dolan, R.D., Davis, E.M., Appelman, H.D., Guo, X., Jackson, K., Sturm, M.B., Wang, T.D., Owyang, C., et al. (2020). Evidence of Duodenal Epithelial Barrier Impairment and Increased Pyroptosis in Patients With Functional Dyspepsia on Confocal Laser Endomicroscopy and „Ex Vivo“ Mucosa Analysis. Am J Gastroenterol 115, 1891-1901. 10.14309/ajg.0000000000000827.
[5] Wauters, L., Ceulemans, M., Frings, D., Lambaerts, M., Accarie, A., Toth, J., Mols, R., Augustijns, P., De Hertogh, G., Van Oudenhove, L., et al. (2021). Proton Pump Inhibitors Reduce Duodenal Eosinophilia, Mast Cells, and Permeability in Patients With Functional Dyspepsia. Gastroenterology 160, 1521-1531.e1529. 10.1053/j.gastro.2020.12.016.
[6] Wauters, L., Tito, R.Y., Ceulemans, M., Lambaerts, M., Accarie, A., Rymenans, L., Verspecht, C., Toth, J., Mols, R., Augustijns, P., et al. (2021). Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia. Int J Mol Sci 22. 10.3390/ijms222413609.
[7] Zhang, X., Chen, L., Zhang, T., Gabo, R., Wang, Q., Zhong, Z., Yao, M., Wei, W., and Su, X. (2024). Duodenal microbiota dysbiosis in functional dyspepsia and its potential role of the duodenal microbiota in gut–brain axis interaction: a systematic review. Frontiers in Microbiology 15. 10.3389/fmicb.2024.1409280.
[8] Ford, A.C., Mahadeva, S., Carbone, M.F., Lacy, B.E., and Talley, N.J. (2020). Functional dyspepsia. The Lancet 396, 1689-1702.
[9] Pasricha, P.J., Grover, M., Yates, K.P., Abell, T.L., Bernard, C.E., Koch, K.L., McCallum, R.W., Sarosiek, I., Kuo, B., Bulat, R., et al. (2021). Functional Dyspepsia and Gastroparesis in Tertiary Care are Interchangeable Syndromes With Common Clinical and Pathologic Features. Gastroenterology 160, 2006-2017. 10.1053/j.gastro.2021.01.230.
[10] Futagami, S., Yamawaki, H., Agawa, S., Higuchi, K., Ikeda, G., Noda, H., Kirita, K., Akimoto, T., Wakabayashi, M., Sakasegawa, N., et al. (2018). New classification Rome IV functional dyspepsia and subtypes. Transl Gastroenterol Hepatol 3, 70. 10.21037/tgh.2018.09.12.
[11] de Bortoli, N., Tolone, S., Frazzoni, M., Martinucci, I., Sgherri, G., Albano, E., Ceccarelli, L., Stasi, C., Bellini, M., Savarino, V., et al. (2018). Gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome: common overlapping gastrointestinal disorders. Ann Gastroenterol 31, 639-648. 10.20524/aog.2018.0314.
[12] Fischbach, W., Malfertheiner, P., Hoffmann, J., Bolten, W., Bornschein, J., Götze, O., Höhne, W., Kist, M., Koletzko, S., and Labenz, J. (2009). S3-Leitlinie „Helicobacter pylori und gastroduodenale Ulkuskrankheit” der Deutschen Gesellschaft für Verdauungs-und Stoffwechselkrankheiten (DGVS). Zeitschrift für Gastroenterologie 47, 68-102.
[13] Fischbach, W. (2009). MALT-Lymphom. Gastroenterologie up2date 5, 103-112.
[14] Azadbakht, S., Azadbakht, S., Esmaili, A., and Rahmani, P. (2020). Comparison of clinical symptoms after Helicobacter pylori eradication in functional dyspepsia patients based on endoscopic view of antral gastropathy. New Microbes and New Infections 38, 100806. https://doi.org/10.1016/j.nmni.2020.100806.
[15] Sloan, J.A., and Katz, P.O. (2021). Proton Pump Inhibitors in 2021: Pros, Cons, and Everything in Between. Foregut 1, 145-151. 10.1177/26345161211021766.
[16] Kinoshita, Y., Ishimura, N., and Ishihara, S. (2018). Advantages and Disadvantages of Long-term Proton Pump Inhibitor Use. J Neurogastroenterol Motil 24, 182-196. 10.5056/jnm18001.
[17] Jackson, M.A., Goodrich, J.K., Maxan, M.E., Freedberg, D.E., Abrams, J.A., Poole, A.C., Sutter, J.L., Welter, D., Ley, R.E., Bell, J.T., et al. (2016). Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749-756. 10.1136/gutjnl-2015-310861.
[18] Heidelbaugh, J.J. (2013). Proton pump inhibitors and risk of vitamin and mineral deficiency: evidence and clinical implications. Ther Adv Drug Saf 4, 125-133. 10.1177/2042098613482484.
[19] Namikawa, K., and Björnsson, E.S. (2024). Rebound Acid Hypersecretion after Withdrawal of Long-Term Proton Pump Inhibitor (PPI) Treatment-Are PPIs Addictive? Int J Mol Sci 25. 10.3390/ijms25105459.
[20] Imhann, F., Bonder, M.J., Vich Vila, A., Fu, J., Mujagic, Z., Vork, L., Tigchelaar, E.F., Jankipersadsing, S.A., Cenit, M.C., Harmsen, H.J., et al. (2016). Proton pump inhibitors affect the gut microbiome. Gut 65, 740-748. 10.1136/gutjnl-2015-310376.
[21] Su, T., Lai, S., Lee, A., He, X., and Chen, S. (2018). Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth. J Gastroenterol 53, 27-36. 10.1007/s00535-017-1371-9.
[22] Guo, H., Zhang, R., Zhang, P., Chen, Z., Hua, Y., Huang, X., and Li, X. (2023). Association of proton pump inhibitors with gastric and colorectal cancer risk: A systematic review and meta-analysis. Frontiers in Pharmacology 14. 10.3389/fphar.2023.1129948.
[23] Compare, D., Pica, L., Rocco, A., De Giorgi, F., Cuomo, R., Sarnelli, G., Romano, M., and Nardone, G. (2011). Effects of long-term PPI treatment on producing bowel symptoms and SIBO. Eur J Clin Invest 41, 380-386. 10.1111/j.1365-2362.2010.02419.x.
[24] Storr, M. (2019). Ein Therapie-Algorithmus bei Reizmagen. MMW – Fortschritte der Medizin 161, 38-38. 10.1007/s15006-019-1003-9.
[25] Amerikanou, C., Kleftaki, S.A., Valsamidou, E., Chroni, E., Biagki, T., Sigala, D., Koutoulogenis, K., Anapliotis, P., Gioxari, A., and Kaliora, A.C. (2023). Food, Dietary Patterns, or Is Eating Behavior to Blame? Analyzing the Nutritional Aspects of Functional Dyspepsia. Nutrients 15. 10.3390/nu15061544.
[26] Rettura, F., Lambiase, C., Grosso, A., Rossi, A., Tedeschi, R., Ceccarelli, L., and Bellini, M. (2023). Role of Low-FODMAP diet in functional dyspepsia:“Why”,“When”, and “to Whom”. Best Practice & Research Clinical Gastroenterology, 101831.
[27] Zhang, J., Wu, H.M., Wang, X., Xie, J., Li, X., Ma, J., Wang, F., and Tang, X. (2020). Efficacy of prebiotics and probiotics for functional dyspepsia: A systematic review and meta-analysis. Medicine (Baltimore) 99, e19107. 10.1097/md.0000000000019107.
[28] Wauters, L., Slaets, H., De Paepe, K., Ceulemans, M., Wetzels, S., Geboers, K., Toth, J., Thys, W., Dybajlo, R., Walgraeve, D., et al. (2021). Efficacy and safety of spore-forming probiotics in the treatment of functional dyspepsia: a pilot randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 6, 784-792. 10.1016/s2468-1253(21)00226-0.
[1] Seferovic, M.D., Pace, R.M., Carroll, M., Belfort, B., Major, A.M., Chu, D.M., Racusin, D.A., Castro, E.C.C., Muldrew, K.L., Versalovic, J., and Aagaard, K.M. (2019). Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol 221, 146.e141-146.e123. 10.1016/j.ajog.2019.04.036.
[2] Kennedy, K.M., de Goffau, M.C., Perez-Muñoz, M.E., Arrieta, M.C., Bäckhed, F., Bork, P., Braun, T., Bushman, F.D., Dore, J., de Vos, W.M., et al. (2023). Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639-649. 10.1038/s41586-022-05546-8.
[3] Gil, A., Rueda, R., Ozanne, S.E., van der Beek, E.M., van Loo-Bouwman, C., Schoemaker, M., Marinello, V., Venema, K., Stanton, C., Schelkle, B., et al. (2020). Is there evidence for bacterial transfer via the placenta and any role in the colonization of the infant gut? – a systematic review. Crit Rev Microbiol 46, 493-507. 10.1080/1040841x.2020.1800587.
[4] de Goffau, M.C., Lager, S., Sovio, U., Gaccioli, F., Cook, E., Peacock, S.J., Parkhill, J., Charnock-Jones, D.S., and Smith, G.C.S. (2019). Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329-334. 10.1038/s41586-019-1451-5.
[5] Mitchell, C., Mazzoni, C., Hogstrom, L., Bryant, A., Bergerat, A., Cher, A., Pochan, S., Herman, P., Carrigan, M., Sharp, K., et al. (2020). Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Reports Medicine 1, 100156. 10.1016/j.xcrm.2020.100156.
[6] Shao, Y., Forster, S.C., Tsaliki, E., Vervier, K., Strang, A., Simpson, N., Kumar, N., Stares, M.D., Rodger, A., Brocklehurst, P., et al. (2019). Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117-121. 10.1038/s41586-019-1560-1.
[7] Sandall, J., Tribe, R.M., Avery, L., Mola, G., Visser, G.H., Homer, C.S., Gibbons, D., Kelly, N.M., Kennedy, H.P., Kidanto, H., et al. (2018). Short-term and long-term effects of caesarean section on the health of women and children. Lancet 392, 1349-1357. 10.1016/s0140-6736(18)31930-5.
[8] Arboleya, S., Binetti, A., Salazar, N., Fernández, N., Solís, G., Hernandez-Barranco, A., Margolles, A., de Los Reyes-Gavilán, C.G., and Gueimonde, M. (2012). Establishment and development of intestinal microbiota in preterm neonates. FEMS microbiology ecology 79, 763-772.
[9] Xiang, Q., Yan, X., Shi, W., Li, H., and Zhou, K. (2023). Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 51, 59-72. 10.1016/j.jare.2022.11.004.
[10] Stewart, C.J., Embleton, N.D., Clements, E., Luna, P.N., Smith, D.P., Fofanova, T.Y., Nelson, A., Taylor, G., Orr, C.H., Petrosino, J.F., et al. (2017). Cesarean or Vaginal Birth Does Not Impact the Longitudinal Development of the Gut Microbiome in a Cohort of Exclusively Preterm Infants. Front Microbiol 8, 1008. 10.3389/fmicb.2017.01008.
[11] Kim, S.Y., and Yi, D.Y. (2020). Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Exp Mol Med 52, 1288-1297. 10.1038/s12276-020-0470-5.
[12] Dieterich, C.M., Felice, J.P., O’Sullivan, E., and Rasmussen, K.M. (2013). Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin North Am 60, 31-48. 10.1016/j.pcl.2012.09.010.
[13] Liu, Y., Qin, S., Song, Y., Feng, Y., Lv, N., Xue, Y., Liu, F., Wang, S., Zhu, B., Ma, J., and Yang, H. (2019). The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding. Front Microbiol 10, 598. 10.3389/fmicb.2019.00598.
[14] Martin, C.R., Ling, P.R., and Blackburn, G.L. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 8. 10.3390/nu8050279.
[15] Capra, M.E., Decarolis, N.M., Monopoli, D., Laudisio, S.R., Giudice, A., Stanyevic, B., Esposito, S., and Biasucci, G. (2024). Complementary Feeding: Tradition, Innovation and Pitfalls. Nutrients 16. 10.3390/nu16050737.
[16] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., et al. (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 690-703. 10.1016/j.chom.2015.04.004.
[17] Timmerman, H.M., Rutten, N., Boekhorst, J., Saulnier, D.M., Kortman, G.A.M., Contractor, N., Kullen, M., Floris, E., Harmsen, H.J.M., Vlieger, A.M., et al. (2017). Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Sci Rep 7, 8327. 10.1038/s41598-017-08268-4.
[18] Robertson, R.C., Manges, A.R., Finlay, B.B., and Prendergast, A.J. (2019). The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends Microbiol 27, 131-147. 10.1016/j.tim.2018.09.008.
[19] Tamburini, S., Shen, N., Wu, H.C., and Clemente, J.C. (2016). The microbiome in early life: implications for health outcomes. Nature Medicine 22, 713-722. 10.1038/nm.4142.
[20] Prendergast, A.J., and Humphrey, J.H. (2014). The stunting syndrome in developing countries. Paediatr Int Child Health 34, 250-265. 10.1179/2046905514y.0000000158.
[21] Dalby, M.J., and Hall, L.J. (2020). Recent advances in understanding the neonatal microbiome. F1000Res 9. 10.12688/f1000research.22355.1.
[22] Arrieta, M.C., Stiemsma, L.T., Amenyogbe, N., Brown, E.M., and Finlay, B. (2014). The intestinal microbiome in early life: health and disease. Front Immunol 5, 427. 10.3389/fimmu.2014.00427.
[23] Scholle, O., Asendorf, M., Buck, C., Grill, S., Jones, C., Kollhorst, B., Riedel, O., Schüz, B., and Haug, U. (2022). Regional Variations in Outpatient Antibiotic Prescribing in Germany: A Small Area Analysis Based on Claims Data. Antibiotics 11, 836.
[24] Simonsen, K.A., Anderson-Berry, A.L., Delair, S.F., and Davies, H.D. (2014). Early-onset neonatal sepsis. Clin Microbiol Rev 27, 21-47. 10.1128/cmr.00031-13.
[25] McDonnell, L., Gilkes, A., Ashworth, M., Rowland, V., Harries, T.H., Armstrong, D., and White, P. (2021). Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 13, 1-18. 10.1080/19490976.2020.1870402.
[26] Reyman, M., van Houten, M.A., Watson, R.L., Chu, M., Arp, K., de Waal, W.J., Schiering, I., Plötz, F.B., Willems, R.J.L., van Schaik, W., et al. (2022). Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun 13, 893. 10.1038/s41467-022-28525-z.
[27] Zeevenhooven, J., Browne, P.D., L’Hoir, M.P., de Weerth, C., and Benninga, M.A. (2018). Infant colic: mechanisms and management. Nat Rev Gastroenterol Hepatol 15, 479-496. 10.1038/s41575-018-0008-7.
[28] Baaleman, D.F., Di Lorenzo, C., Benninga, M.A., and Saps, M. (2020). The Effects of the Rome IV Criteria on Pediatric Gastrointestinal Practice. Current Gastroenterology Reports 22, 21. 10.1007/s11894-020-00760-8.
[29] Dubois, N.E., and Gregory, K.E. (2016). Characterizing the Intestinal Microbiome in Infantile Colic: Findings Based on an Integrative Review of the Literature. Biol Res Nurs 18, 307-315. 10.1177/1099800415620840.
[30] Vaz, S.R., Tofoli, M.H., Avelino, M.A.G., and da Costa, P.S.S. (2024). Probiotics for infantile colic: Is there evidence beyond doubt? A meta-analysis and systematic review. Acta Paediatr 113, 170-182. 10.1111/apa.17036.
[31] Nocerino, R., De Filippis, F., Cecere, G., Marino, A., Micillo, M., Di Scala, C., de Caro, C., Calignano, A., Bruno, C., Paparo, L., et al. (2020). The therapeutic efficacy of Bifidobacterium animalis subsp. lactis BB-12(®) in infant colic: A randomised, double blind, placebo-controlled trial. Aliment Pharmacol Ther 51, 110-120. 10.1111/apt.15561.
[32] Chen, K., Zhang, G., Xie, H., You, L., Li, H., Zhang, Y., Du, C., Xu, S., Melsaether, C., and Yuan, S. (2021). Efficacy of Bifidobacterium animalis subsp. lactis, BB-12(®) on infant colic – a randomised, double-blinded, placebo-controlled study. Benef Microbes 12, 531-540. 10.3920/bm2020.0233.
[33] Indrio, F., Di Mauro, A., Riezzo, G., Civardi, E., Intini, C., Corvaglia, L., Ballardini, E., Bisceglia, M., Cinquetti, M., Brazzoduro, E., et al. (2014). Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial. JAMA Pediatr 168, 228-233. 10.1001/jamapediatrics.2013.4367.
[34] Dos Reis Buzzo Zermiani, A.P., de Paula Soares, A., da Silva Guedes de Moura, B.L., Miguel, E.R.A., Lopes, L.D.G., de Carvalho Scharf Santana, N., da Silva Santos, T., Demarchi, I.G., and Teixeira, J.J. (2021). Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complement Ther Med 63, 102781. 10.1016/j.ctim.2021.102781.
[35] Turco, R., Russo, M., Bruzzese, D., and Staiano, A. (2021). Efficacy of a partially hydrolysed formula, with reduced lactose content and with Lactobacillus reuteri DSM 17938 in infant colic: A double blind, randomised clinical trial. Clin Nutr 40, 412-419. 10.1016/j.clnu.2020.05.048.
[36] Thomsen, S.F. (2015). Epidemiology and natural history of atopic diseases. Eur Clin Respir J 2. 10.3402/ecrj.v2.24642.
[37] Pucci, S., and Incorvaia, C. (2008). Allergy as an organ and a systemic disease. Clin Exp Immunol 153 Suppl 1, 1-2. 10.1111/j.1365-2249.2008.03712.x.
[38] Tsuge, M., Ikeda, M., Matsumoto, N., Yorifuji, T., and Tsukahara, H. (2021). Current Insights into Atopic March. Children (Basel) 8. 10.3390/children8111067.
[39] Portelli, M.A., Hodge, E., and Sayers, I. (2015). Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin Exp Allergy 45, 21-31. 10.1111/cea.12327.
[40] Clark, A., and Mach, N. (2016). Role of Vitamin D in the Hygiene Hypothesis: The Interplay between Vitamin D, Vitamin D Receptors, Gut Microbiota, and Immune Response. Front Immunol 7, 627. 10.3389/fimmu.2016.00627.
[41] Garn, H., Potaczek, D.P., and Pfefferle, P.I. (2021). The Hygiene Hypothesis and New Perspectives-Current Challenges Meeting an Old Postulate. Front Immunol 12, 637087. 10.3389/fimmu.2021.637087.
[42] Yazdanbakhsh, M., Kremsner, P.G., and van Ree, R. (2002). Allergy, parasites, and the hygiene hypothesis. Science 296, 490-494. 10.1126/science.296.5567.490.
[43] Klimek, L., Bachert, C., Pfaar, O., Becker, S., Bieber, T., Brehler, R., Buhl, R., Casper, I., Chaker, A., Czech, W., et al. (2019). ARIA guideline 2019: treatment of allergic rhinitis in the German health system. Allergol Select 3, 22-50. 10.5414/alx02120e.
[44] Leitlinienreport der S3-Leitlinie „Atopische Dermatitis“ der Deutsche Dermatologische Gesellschaft e.V. (DDG)(AWMF-Registernr. 013-027) (2023). https://register.awmf.org/de/leitlinien/detail/013-027.
[45] Lommatzsch, M., Criée, C.P., de Jong, C.C.M., Gappa, M., Geßner, C., Gerstlauer, M., Hämäläinen, N., Haidl, P., Hamelmann, E., Horak, F., et al. (2023). [Diagnosis and treatment of asthma: a guideline for respiratory specialists 2023 – published by the German Respiratory Society (DGP) e. V.]. Pneumologie 77, 461-543. 10.1055/a-2070-2135.
[46] Zhang, P. (2023). The Role of Diet and Nutrition in Allergic Diseases. Nutrients 15. 10.3390/nu15173683.
[47] Venter, C., Meyer, R.W., Greenhawt, M., Pali-Schöll, I., Nwaru, B., Roduit, C., Untersmayr, E., Adel-Patient, K., Agache, I., Agostoni, C., et al. (2022). Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy 77, 3185-3198. 10.1111/all.15430.
[48] Andrianasolo, R.M., Hercberg, S., Kesse-Guyot, E., Druesne-Pecollo, N., Touvier, M., Galan, P., and Varraso, R. (2019). Association between dietary fibre intake and asthma (symptoms and control): results from the French national e-cohort NutriNet-Santé. Br J Nutr 122, 1040-1051. 10.1017/s0007114519001843.
[49] Kim, J.H., Kim, K., and Kim, W. (2021). Gut microbiota restoration through fecal microbiota transplantation: a new atopic dermatitis therapy. Exp Mol Med 53, 907-916. 10.1038/s12276-021-00627-6.
[50] Jensen, C., Antonsen, M.F., and Lied, G.A. (2022). Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms 10. 10.3390/microorganisms10101904.
[51] Wang, H.T., Anvari, S., and Anagnostou, K. (2019). The Role of Probiotics in Preventing Allergic Disease. Children (Basel) 6. 10.3390/children6020024.
[52] Tan-Lim, C.S.C., Esteban-Ipac, N.A.R., Recto, M.S.T., Castor, M.A.R., Casis-Hao, R.J., and Nano, A.L.M. (2021). Comparative effectiveness of probiotic strains on the prevention of pediatric atopic dermatitis: A systematic review and network meta-analysis. Pediatr Allergy Immunol 32, 1255-1270. 10.1111/pai.13514.
[53] Niers, L., Martín, R., Rijkers, G., Sengers, F., Timmerman, H., van Uden, N., Smidt, H., Kimpen, J., and Hoekstra, M. (2009). The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy 64, 1349-1358. 10.1111/j.1398-9995.2009.02021.x.
[54] Rutten, N.B., Gorissen, D.M., Eck, A., Niers, L.E., Vlieger, A.M., Besseling-van der Vaart, I., Budding, A.E., Savelkoul, P.H., van der Ent, C.K., and Rijkers, G.T. (2015). Long Term Development of Gut Microbiota Composition in Atopic Children: Impact of Probiotics. PLoS One 10, e0137681. 10.1371/journal.pone.0137681.
[55] Huang, J., Zhang, J., Wang, X., Jin, Z., Zhang, P., Su, H., and Sun, X. (2022). Effect of Probiotics on Respiratory Tract Allergic Disease and Gut Microbiota. Front Nutr 9, 821900. 10.3389/fnut.2022.821900.
[56] Ciprandi, G., and Tosca, M.A. (2022). Probiotics in Allergic Rhinitis Management: Is There a Positioning for Them? Allergies 2, 119-127.
[57] Rusu, E., Enache, G., Cursaru, R., Alexescu, A., Radu, R., Onila, O., Cavallioti, T., Rusu, F., Posea, M., Jinga, M., and Radulian, G. (2019). Prebiotics and probiotics in atopic dermatitis. Exp Ther Med 18, 926-931. 10.3892/etm.2019.7678.
[58] Myles, I.A., Castillo, C.R., Barbian, K.D., Kanakabandi, K., Virtaneva, K., Fitzmeyer, E., Paneru, M., Otaizo-Carrasquero, F., Myers, T.G., Markowitz, T.E., et al. (2020). Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Sci Transl Med 12. 10.1126/scitranslmed.aaz8631.
[59] Noll, M., Jäger, M., Lux, L., Buettner, C., and Axt-Gadermann, M. (2021). Improvement of Atopic Dermatitis by Synbiotic Baths. Microorganisms 9. 10.3390/microorganisms9030527.
[60] Ouwehand, A.C., Nermes, M., Collado, M.C., Rautonen, N., Salminen, S., and Isolauri, E. (2009). Specific probiotics alleviate allergic rhinitis during the birch pollen season. World J Gastroenterol 15, 3261-3268. 10.3748/wjg.15.3261.
[61] Wang, I.J., and Wang, J.Y. (2015). Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clinical & Experimental Allergy 45, 779-787.
[62] Huang, C.F., Chie, W.C., and Wang, I.J. (2018). Efficacy of Lactobacillus Administration in School-Age Children with Asthma: A Randomized, Placebo-Controlled Trial. Nutrients 10. 10.3390/nu10111678.
[1] Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J., Wałecka-Zacharska, E., Radtke, L., and Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 9. 10.3390/microorganisms9030543.
[2] Ahmed, I.A., and Mikail, M.A. (2024). Diet and skin health: The good and the bad. Nutrition 119, 112350. https://doi.org/10.1016/j.nut.2023.112350.
[3] Ledochowski, M. (2010). Klinische Ernährungsmedizin (Springer-Verlag).
[4] Sharma, N., Chaudhary, S.M., Khungar, N., Aulakh, S.K., Idris, H., Singh, A., and Sharma, K. (2024). Dietary Influences on Skin Health in Common Dermatological Disorders. Cureus 16, e55282. 10.7759/cureus.55282.
[5] Mohammad, S., Karim, M.R., Iqbal, S., Lee, J.H., Mathiyalagan, R., Kim, Y.J., Yang, D.U., and Yang, D.C. (2024). Atopic dermatitis: Pathophysiology, microbiota, and metabolome – A comprehensive review. Microbiol Res 281, 127595. 10.1016/j.micres.2023.127595.
[6] Yokose, U., Ishikawa, J., Morokuma, Y., Naoe, A., Inoue, Y., Yasuda, Y., Tsujimura, H., Fujimura, T., Murase, T., and Hatamochi, A. (2020). The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation. BMC Dermatology 20, 6. 10.1186/s12895-020-00102-1.
[7] Brunner, P.M., Guttman-Yassky, E., and Leung, D.Y.M. (2017). The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. Journal of Allergy and Clinical Immunology 139, S65-S76. 10.1016/j.jaci.2017.01.011.
[8] Rø, A.D.B., Simpson, M.R., Rø, T.B., Storrø, O., Johnsen, R., Videm, V., and Øien, T. (2017). Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clin Exp Allergy 47, 1014-1021. 10.1111/cea.12930.
[9] Kong, H.H., Oh, J., Deming, C., Conlan, S., Grice, E.A., Beatson, M.A., Nomicos, E., Polley, E.C., Komarow, H.D., and Murray, P.R. (2012). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome research 22, 850-859.
[10] Melli, L.C.F.L., do Carmo-Rodrigues, M.S., Araújo-Filho, H.B., Mello, C.S., Tahan, S., Pignatari, A.C.C., Solé, D., and de Morais, M.B. (2020). Gut microbiota of children with atopic dermatitis: Controlled study in the metropolitan region of São Paulo, Brazil. Allergologia et Immunopathologia 48, 107-115.
[11] Penders, J., Thijs, C., van den Brandt, P.A., Kummeling, I., Snijders, B., Stelma, F., Adams, H., van Ree, R., and Stobberingh, E.E. (2007). Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56, 661-667.
[12] Wang, I.J., and Wang, J.Y. (2015). Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clinical & Experimental Allergy 45, 779-787.
[13] Wickens, K., Black, P., Stanley, T., Mitchell, E., Barthow, C., Fitzharris, P., Purdie, G., and Crane, J. (2012). A protective effect of L actobacillus rhamnosus HN 001 against eczema in the first 2 years of life persists to age 4 years. Clinical & Experimental Allergy 42, 1071-1079.
[14] Wickens, K., Stanley, T.V., Mitchell, E.A., Barthow, C., Fitzharris, P., Purdie, G., Siebers, R., Black, P.N., and Crane, J. (2013). Early supplementation with Lactobacillus rhamnosus HN001 reduces eczema prevalence to 6 years: does it also reduce atopic sensitization? Clin Exp Allergy 43, 1048-1057. 10.1111/cea.12154.
[15] Wickens, K., Barthow, C., Mitchell, E.A., Kang, J., van Zyl, N., Purdie, G., Stanley, T., Fitzharris, P., Murphy, R., and Crane, J. (2018). Effects of Lactobacillus rhamnosus HN001 in early life on the cumulative prevalence of allergic disease to 11 years. Pediatr Allergy Immunol 29, 808-814. 10.1111/pai.12982.
[16] Moreau, M., Seité, S., Aguilar, L., Da Cruz, O., Puech, J., Frieling, J., and Demessant, A. (2021). Topical S. aureus – Targeting Endolysin Significantly Improves Symptoms and QoL in Individuals With Atopic Dermatitis. J Drugs Dermatol 20, 1323-1328. 10.36849/jdd.6363.
[17] Armstrong, A.W., and Read, C. (2020). Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. Jama 323, 1945-1960. 10.1001/jama.2020.4006.
[18] Gambichler, T., Küster, W., Kreuter, A., Altmeyer, P., and Hoffmann, K. (2000). Balneophototherapy–combined treatment of psoriasis vulgaris and atopic dermatitis with salt water baths and artificial ultraviolet radiation. J Eur Acad Dermatol Venereol 14, 425-428. 10.1046/j.1468-3083.2000.00102-4.x.
[19] Moini Jazani, A., Ayati, M.H., Nadiri, A.A., and Nasimi Doost Azgomi, R. (2023). Efficacy of hydrotherapy, spa therapy, and balneotherapy for psoriasis and atopic dermatitis: a systematic review. Int J Dermatol 62, 177-189. 10.1111/ijd.16080.
[20] Zeng, L., Yu, G., Wu, Y., Hao, W., and Chen, H. (2021). The Effectiveness and Safety of Probiotic Supplements for Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Preclinical Trials. J Immunol Res 2021, 7552546. 10.1155/2021/7552546.
[21] Navarro-López, V., Martínez-Andrés, A., Ramírez-Boscá, A., Ruzafa-Costas, B., Núñez-Delegido, E., Carrión-Gutiérrez, M.A., Prieto-Merino, D., Codoñer-Cortés, F., Ramón-Vidal, D., Genovés-Martínez, S., et al. (2019). Efficacy and Safety of Oral Administration of a Mixture of Probiotic Strains in Patients with Psoriasis: A Randomized Controlled Clinical Trial. Acta Derm Venereol 99, 1078-1084. 10.2340/00015555-3305.
[22] Buhaș, M.C., Candrea, R., Gavrilaș, L.I., Miere, D., Tătaru, A., Boca, A., and Cătinean, A. (2023). Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 24. 10.3390/ijms241311225.
[23] Dréno, B., Dagnelie, M.A., Khammari, A., and Corvec, S. (2020). The Skin Microbiome: A New Actor in Inflammatory Acne. Am J Clin Dermatol 21, 18-24. 10.1007/s40257-020-00531-1.
[24] Nast, A., Bayerl, C., Borelli, C., Degitz, K., Dirschka, T., Erdmann, R., Fluhr, J., Gieler, U., Hartwig, R., Meigel, E.M., et al. (2010). [S2k-guideline for therapy of acne]. J Dtsch Dermatol Ges 8 Suppl 2, s1-59. 10.1111/j.1610-0387.2010.07466.x.
[25] Keri, J.E. (2022). Acne Vulgaris. https://www.msdmanuals.com/de-de/profi/erkrankungen-der-haut/akne-und-verwandte-erkrankungen/acne-vulgaris.
[26] Bowe, W.P., and Logan, A.C. (2011). Acne vulgaris, probiotics and the gut-brain-skin axis – back to the future? Gut Pathog 3, 1. 10.1186/1757-4749-3-1.
[27] Alyoussef, A. (2024). The Impact of Consuming Probiotics and Following a Vegetarian Diet on the Outcomes of Acne. Cureus 16, e51563. 10.7759/cureus.51563.
[28] Kim, J., Ko, Y., Park, Y.K., Kim, N.I., Ha, W.K., and Cho, Y. (2010). Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition 26, 902-909. 10.1016/j.nut.2010.05.011.
[29] Fabbrocini, G., Bertona, M., Picazo, Ó., Pareja-Galeano, H., Monfrecola, G., and Emanuele, E. (2016). Supplementation with Lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes 7, 625-630. 10.3920/bm2016.0089.
[30] Kang, B.S., Seo, J.-G., Lee, G.-S., Kim, J.-H., Kim, S.Y., Han, Y.W., Kang, H., Kim, H.O., Rhee, J.H., Chung, M.-J., and Park, Y.M. (2009). Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. The Journal of Microbiology 47, 101-109. 10.1007/s12275-008-0179-y.
[31] Sathikulpakdee, S., Kanokrungsee, S., Vitheejongjaroen, P., Kamanamool, N., Udompataikul, M., and Taweechotipatr, M. (2022). Efficacy of probiotic-derived lotion from Lactobacillus paracasei MSMC 39-1 in mild to moderate acne vulgaris, randomized controlled trial. Journal of Cosmetic Dermatology 21, 5092-5097. https://doi.org/10.1111/jocd.14971.
[32] Cantorna, M.T., Snyder, L., and Arora, J. (2019). Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit Rev Biochem Mol Biol 54, 184-192. 10.1080/10409238.2019.1611734.
[33] Dall’Oglio, F., Nasca, M.R., Fiorentini, F., and Micali, G. (2021). Diet and acne: review of the evidence from 2009 to 2020. Int J Dermatol 60, 672-685. 10.1111/ijd.15390.
[34] Tao, R., Li, R., and Wang, R. (2021). Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review. Exp Dermatol 30, 1546-1553. 10.1111/exd.14450.
[35] Sanders, M.G.H., Pardo, L.M., Franco, O.H., Ginger, R.S., and Nijsten, T. (2018). Prevalence and determinants of seborrhoeic dermatitis in a middle-aged and elderly population: the Rotterdam Study. Br J Dermatol 178, 148-153. 10.1111/bjd.15908.
[36] Gupta, A.K., and Bluhm, R. (2004). Seborrheic dermatitis. J Eur Acad Dermatol Venereol 18, 13-26; quiz 19-20. 10.1111/j.1468-3083.2004.00693.x.
[37] Wikramanayake, T.C., Borda, L.J., Miteva, M., and Paus, R. (2019). Seborrheic dermatitis—Looking beyond Malassezia. Experimental Dermatology 28, 991-1001. https://doi.org/10.1111/exd.14006.
[38] Victoire, A., Magin, P., Coughlan, J., and van Driel, M.L. (2019). Interventions for infantile seborrhoeic dermatitis (including cradle cap). Cochrane Database Syst Rev 3, Cd011380. 10.1002/14651858.CD011380.pub2.
[39] Elgash, M., Dlova, N., Ogunleye, T., and Taylor, S.C. (2019). Seborrheic Dermatitis in Skin of Color: Clinical Considerations. J Drugs Dermatol 18, 24-27.
[40] Kastarinen, H., Oksanen, T., Okokon, E.O., Kiviniemi, V.V., Airola, K., Jyrkkä, J., Oravilahti, T., Rannanheimo, P.K., and Verbeek, J.H. (2014). Topical anti-inflammatory agents for seborrhoeic dermatitis of the face or scalp. Cochrane Database Syst Rev 2014, Cd009446. 10.1002/14651858.CD009446.pub2.
[41] Warnecke, J., and Wendt, A. (1998). Anti-inflammatory action of pale sulfonated shale oil (ICHTHYOL pale) in UVB erythema test. Inflammation research : official journal of the European Histamine Research Society … [et al.] 47, 75-78. 10.1007/s000110050282.
[42] Okokon, E.O., Verbeek, J.H., Ruotsalainen, J.H., Ojo, O.A., and Bakhoya, V.N. (2015). Topical antifungals for seborrhoeic dermatitis. Cochrane Database Syst Rev, Cd008138. 10.1002/14651858.CD008138.pub3.
[43] Mühlenbein, C. (2021). Seborrhoisches Ekzem des Erwachsenen. https://www.pschyrembel.de/Seborrhoisches%20Ekzem/K06MQ/doc/.
[44] Dessinioti, C., and Katsambas, A. (2013). Seborrheic dermatitis: etiology, risk factors, and treatments:: facts and controversies. Clinics in dermatology 31, 343-351.
[45] Shin, H., Kwon, O.S., Won, C.H., Kim, B.J., Lee, Y.W., Choe, Y.B., Ahn, K.J., and Eun, H.C. (2009). Clinical efficacies of topical agents for the treatment of seborrheic dermatitis of the scalp: a comparative study. The Journal of Dermatology 36, 131-137.
[46] Truglio, M., Sivori, F., Cavallo, I., Abril, E., Licursi, V., Fabrizio, G., Cardinali, G., Pignatti, M., Toma, L., Valensise, F., et al. (2024). Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Scientific Reports 14, 2722. 10.1038/s41598-024-53016-0.
[47] Sanders, M.G., Pardo, L.M., Ginger, R.S., Kiefte-de Jong, J.C., and Nijsten, T. (2019). Association between diet and seborrheic dermatitis: a cross-sectional study. Journal of Investigative Dermatology 139, 108-114.
[48] Kuna, A.C., Flaig, M.J., and Guertler, A. (2023). [Rosacea-the updated S2k guideline]. Dermatologie (Heidelb) 74, 715-724. 10.1007/s00105-023-05197-4.
[49] Weiss, E., and Katta, R. (2017). Diet and rosacea: the role of dietary change in the management of rosacea. Dermatology practical & conceptual 7, 31.
[50] O’Reilly, N., Menezes, N., and Kavanagh, K. (2012). Positive correlation between serum immunoreactivity to Demodex‐associated Bacillus proteins and erythematotelangiectatic rosacea. British Journal of Dermatology 167, 1032-1036.
[51] Wang, R., Farhat, M., Na, J., Li, R., and Wu, Y. (2020). Bacterial and fungal microbiome characterization in patients with rosacea and healthy controls. Br J Dermatol 183, 1112-1114. 10.1111/bjd.19315.
[52] Holmes, A.D. (2013). Potential role of microorganisms in the pathogenesis of rosacea. Journal of the American Academy of Dermatology 69, 1025-1032.
[53] van Zuuren, E.J. (2017). Rosacea. New England Journal of Medicine 377, 1754-1764.
[54] Goldberg, D., and Berlin, A. (2011). Acne and rosacea: epidemiology, diagnosis and treatment (CRC Press).
[55] Reisdorf, S. (2009). Rosazeatherapie: Mit Doxycyclin gegen Inflammation. Dtsch Arztebl International 106, 2159-.
[56] Sánchez-Pellicer, P., Eguren-Michelena, C., García-Gavín, J., Llamas-Velasco, M., Navarro-Moratalla, L., Núñez-Delegido, E., Agüera-Santos, J., and Navarro-López, V. (2024). Rosacea, microbiome and probiotics: the gut-skin axis. Frontiers in Microbiology 14. 10.3389/fmicb.2023.1323644.
[1] Deuschl, G., Beghi, E., Fazekas, F., Varga, T., Christoforidi, K.A., Sipido, E., Bassetti, C.L., Vos, T., and Feigin, V.L. (2020). The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health 5, e551-e567. 10.1016/s2468-2667(20)30190-0.
[2] Vance, D. (2012). Potential factors that may promote successful cognitive aging. Nursing: Research and Reviews 2. 10.2147/NRR.S32229.
[3] Heinzel, S., Berg, D., Binder, S., Ebersbach, G., Hickstein, L., Herbst, H., Lorrain, M., Wellach, I., Maetzler, W., Petersen, G., et al. (2018). Do We Need to Rethink the Epidemiology and Healthcare Utilization of Parkinson’s Disease in Germany? Front Neurol 9, 500. 10.3389/fneur.2018.00500.
[4] Devi, D., Biswas, S., and Purkayastha, B. (2021). Early Detection of Parkinson’s Disease: An Intelligent Diagnostic Approach. In pp. 61-95.
[5] S2k-Leitlinie Parkinson-Krankheit der Kommission Leitlinien der Deutschen Gesellschaft für Neurologie. (2023). AWMF online. https://register.awmf.org/assets/guidelines/030-010l_Parkinson_Krankheit_2023-11_1.pdf.
[6] Xu, K., Sheng, S., and Zhang, F. (2023). Relationship Between Gut Bacteria and Levodopa Metabolism. Curr Neuropharmacol 21, 1536-1547. 10.2174/1570159×21666221019115716.
[7] Zhu, M., Liu, X., Ye, Y., Yan, X., Cheng, Y., Zhao, L., Chen, F., and Ling, Z. (2022). Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front Immunol 13, 937555. 10.3389/fimmu.2022.937555.
[8] DuPont, H.L., Suescun, J., Jiang, Z.D., Brown, E.L., Essigmann, H.T., Alexander, A.S., DuPont, A.W., Iqbal, T., Utay, N.S., Newmark, M., and Schiess, M.C. (2023). Fecal microbiota transplantation in Parkinson’s disease-A randomized repeat-dose, placebo-controlled clinical pilot study. Front Neurol 14, 1104759. 10.3389/fneur.2023.1104759.
[9] Burgos, R., Bretón, I., Cereda, E., Desport, J.C., Dziewas, R., Genton, L., Gomes, F., Jésus, P., Leischker, A., Muscaritoli, M., et al. (2018). ESPEN guideline clinical nutrition in neurology. Clin Nutr 37, 354-396. 10.1016/j.clnu.2017.09.003.
[10] Parkinson’s Disease. (2023).
[11] Knight, E., Geetha, T., Burnett, D., and Babu, J.R. (2022). The Role of Diet and Dietary Patterns in Parkinson’s Disease. Nutrients 14. 10.3390/nu14214472.
[12] Mischley, L.K., Lau, R.C., and Bennett, R.D. (2017). Role of Diet and Nutritional Supplements in Parkinson’s Disease Progression. Oxid Med Cell Longev 2017, 6405278. 10.1155/2017/6405278.
[13] Hauner, H., Beyer-Reiners, E., Bischoff, G., Breidenassel, C., Ferschke, M., Gebhardt, A., Holzapfel, C., Lambeck, A., Meteling-Eeken, M., and Paul, C. (2019). Leitfaden Ernährungstherapie in Klinik und Praxis (LEKuP). Aktuelle Ernährungsmedizin 44, 384-419.
[14] Uyar, G., and Yildiran, H. (2019). A nutritional approach to microbiota in Parkinson’s disease. Biosci Microbiota Food Health 38, 115-127. 10.12938/bmfh.19-002.
[15] Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 167, 1469-1480.e1412. 10.1016/j.cell.2016.11.018.
[16] Savignac, H.M., Corona, G., Mills, H., Chen, L., Spencer, J.P., Tzortzis, G., and Burnet, P.W. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 63, 756-764. 10.1016/j.neuint.2013.10.006.
[17] Palasz, E., Wysocka, A., Gasiorowska, A., Chalimoniuk, M., Niewiadomski, W., and Niewiadomska, G. (2020). BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int J Mol Sci 21. 10.3390/ijms21031170.
[18] Peterson, C.T. (2020). Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. J Evid Based Integr Med 25, 2515690×20957225. 10.1177/2515690×20957225.
[19] Sancandi, M., De Caro, C., Cypaite, N., Marascio, N., Avagliano, C., De Marco, C., Russo, E., Constanti, A., and Mercer, A. (2022). Effects of a probiotic suspension Symprove™ on a rat early-stage Parkinson’s disease model. Front Aging Neurosci 14, 986127. 10.3389/fnagi.2022.986127.
[20] Liao, J.F., Cheng, Y.F., You, S.T., Kuo, W.C., Huang, C.W., Chiou, J.J., Hsu, C.C., Hsieh-Li, H.M., Wang, S., and Tsai, Y.C. (2020). Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun 90, 26-46. 10.1016/j.bbi.2020.07.036.
[21] Ma, Y.F., Lin, Y.A., Huang, C.L., Hsu, C.C., Wang, S., Yeh, S.R., and Tsai, Y.C. (2023). Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Probiotics Antimicrob Proteins 15, 312-325. 10.1007/s12602-021-09828-x.
[22] Chen, C.M., Wu, C.C., Huang, C.L., Chang, M.Y., Cheng, S.H., Lin, C.T., and Tsai, Y.C. (2022). Lactobacillus plantarum PS128 Promotes Intestinal Motility, Mucin Production, and Serotonin Signaling in Mice. Probiotics Antimicrob Proteins 14, 535-545. 10.1007/s12602-021-09814-3.
[23] Chu, C., Yu, L., Li, Y., Guo, H., Zhai, Q., Chen, W., and Tian, F. (2023). Lactobacillus plantarum CCFM405 against Rotenone-Induced Parkinson’s Disease Mice via Regulating Gut Microbiota and Branched-Chain Amino Acids Biosynthesis. Nutrients 15. 10.3390/nu15071737.
[24] Zhou, L., Han, D., Wang, X., and Chen, Z. (2023). Probiotic Formulation VSL#3 Interacts with Mesenchymal Stromal Cells To Protect Dopaminergic Neurons via Centrally and Peripherally Suppressing NOD-Like Receptor Protein 3 Inflammasome-Mediated Inflammation in Parkinson’s Disease Mice. Microbiol Spectr 11, e0320822. 10.1128/spectrum.03208-22.
[25] Magistrelli, L., Amoruso, A., Mogna, L., Graziano, T., Cantello, R., Pane, M., and Comi, C. (2019). Probiotics May Have Beneficial Effects in Parkinson’s Disease: In vitro Evidence. Front Immunol 10, 969. 10.3389/fimmu.2019.00969.
[26] Yin, S., and Zhu, F. (2022). Probiotics for constipation in Parkinson’s: A systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol 12, 1038928. 10.3389/fcimb.2022.1038928.
[27] Chu, C., Yu, L., Li, Y., Guo, H., Zhai, Q., Chen, W., and Tian, F. (2023). Meta-analysis of randomized controlled trials of the effects of probiotics in Parkinson’s disease. Food Funct 14, 3406-3422. 10.1039/d2fo03825k.
[28] Tamtaji, O.R., Taghizadeh, M., Daneshvar Kakhaki, R., Kouchaki, E., Bahmani, F., Borzabadi, S., Oryan, S., Mafi, A., and Asemi, Z. (2019). Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr 38, 1031-1035. 10.1016/j.clnu.2018.05.018.
[29] Pehl, C., and Andresen, V. (2022). Update S2k-Leitlinie Chronische Obstipation des Erwachsenen. Z Gastroenterol 60, 1473-1474. 10.1055/a-1880-1773.
[30] Armstrong, R.A. (2013). What causes Alzheimer’s disease? Folia Neuropathologica 51, 169-188.
[31] Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7, 13537. 10.1038/s41598-017-13601-y.
[32] Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S.V., Vieira-Saecker, A., Schwartz, S., Albasset, S., McManus, R.M., Tejera, D., et al. (2019). NLRP3 inflammasome activation drives tau pathology. Nature 575, 669-673. 10.1038/s41586-019-1769-z.
[33] S2k-Leitlinie Diagnose und Therapie der Multiplen Sklerose, Neuromyelitis Optica Spektrum und MOG-IgG-assoziierte Erkrankungen – Living Guideline, AWMF-Register Nr. 030-050. (2023). AWMF online. https://register.awmf.org/de/leitlinien/detail/030-050.
[34] Hazan, S. (2020). Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res 48, 300060520925930. 10.1177/0300060520925930.
[35] Park, S.H., Lee, J.H., Shin, J., Kim, J.S., Cha, B., Lee, S., Kwon, K.S., Shin, Y.W., and Choi, S.H. (2021). Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report. Curr Med Res Opin 37, 1739-1744. 10.1080/03007995.2021.1957807.
[36] Ballarini, T., Melo van Lent, D., Brunner, J., Schröder, A., Wolfsgruber, S., Altenstein, S., Brosseron, F., Buerger, K., Dechent, P., Dobisch, L., et al. (2021). Mediterranean Diet, Alzheimer Disease Biomarkers and Brain Atrophy in Old Age. Neurology 96, e2920-e2932. 10.1212/wnl.0000000000012067.
[37] Lee, D., Lee, V.M., and Hur, S.K. (2022). Manipulation of the diet-microbiota-brain axis in Alzheimer’s disease. Front Neurosci 16, 1042865. 10.3389/fnins.2022.1042865.
[38] Liu, Q., Xi, Y., Wang, Q., Liu, J., Li, P., Meng, X., Liu, K., Chen, W., Liu, X., and Liu, Z. (2021). Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 95, 330-343. 10.1016/j.bbi.2021.04.005.
[39] Desmedt, O., Broers, V.J.V., Zamariola, G., Pachikian, B., Delzenne, N., and Luminet, O. (2018). Effects of prebiotics on affect and cognition in human intervention studies. Nutrition Reviews 77, 81-95. 10.1093/nutrit/nuy052.
[40] Kang, J.W., and Zivkovic, A.M. (2021). The Potential Utility of Prebiotics to Modulate Alzheimer’s Disease: A Review of the Evidence. Microorganisms 9. 10.3390/microorganisms9112310.
[41] Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., Xie, Z., Chu, X., Yang, J., Wang, H., et al. (2019). Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29, 787-803. 10.1038/s41422-019-0216-x.
[42] Seo, D.O., Boros, B.D., and Holtzman, D.M. (2019). The microbiome: A target for Alzheimer disease? Cell Res 29, 779-780. 10.1038/s41422-019-0227-7.
[43] Xiao, S., Chan, P., Wang, T., Hong, Z., Wang, S., Kuang, W., He, J., Pan, X., Zhou, Y., Ji, Y., et al. (2021). A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther 13, 62. 10.1186/s13195-021-00795-7.
[44] Kuboyama, T., Tohda, C., and Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37, 892-897. 10.1248/bpb.b14-00022.
[45] Noguchi-Shinohara, M., Hamaguchi, T., Sakai, K., Komatsu, J., Iwasa, K., Horimoto, M., Nakamura, H., Yamada, M., and Ono, K. (2023). Effects of Melissa officinalis Extract Containing Rosmarinic Acid on Cognition in Older Adults Without Dementia: A Randomized Controlled Trial. J Alzheimers Dis 91, 805-814. 10.3233/jad-220953.
[46] El Menuawy, A., Brüning, T., Eiriz, I., Hähnel, U., Marthe, F., Möhle, L., Górska, A.M., Santos-García, I., Wangensteen, H., Wu, J., and Pahnke, J. (2024). Apolar Extracts of St. John’s Wort Alleviate the Effects of β-Amyloid Toxicity in Early Alzheimer’s Disease. Int J Mol Sci 25. 10.3390/ijms25021301.
[47] Scholey, A.B., Tildesley, N.T., Ballard, C.G., Wesnes, K.A., Tasker, A., Perry, E.K., and Kennedy, D.O. (2008). An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology (Berl) 198, 127-139. 10.1007/s00213-008-1101-3.
[48] Zhang, H.F., Huang, L.B., Zhong, Y.B., Zhou, Q.H., Wang, H.L., Zheng, G.Q., and Lin, Y. (2016). An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Front Aging Neurosci 8, 276. 10.3389/fnagi.2016.00276.
[49] Ruiz-Gonzalez, C., Roman, P., Rueda-Ruzafa, L., Rodriguez-Arrastia, M., and Cardona, D. (2021). Effects of probiotics supplementation on dementia and cognitive impairment: A systematic review and meta-analysis of preclinical and clinical studies. Prog Neuropsychopharmacol Biol Psychiatry 108, 110189. 10.1016/j.pnpbp.2020.110189.
[50] Naomi, R., Embong, H., Othman, F., Ghazi, H.F., Maruthey, N., and Bahari, H. (2021). Probiotics for Alzheimer’s Disease: A Systematic Review. Nutrients 14. 10.3390/nu14010020.
[51] Flynn, C.M., and Yuan, Q. (2023). Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front Neurosci 17, 1159314. 10.3389/fnins.2023.1159314.
[52] Korn, T. (2008). Pathophysiology of multiple sclerosis. Journal of neurology 255, 2-6.
[53] Preiningerova, J.L., Jiraskova Zakostelska, Z., Srinivasan, A., Ticha, V., Kovarova, I., Kleinova, P., Tlaskalova-Hogenova, H., and Kubala Havrdova, E. (2022). Multiple Sclerosis and Microbiome. Biomolecules 12. 10.3390/biom12030433.
[54] Ghezzi, L., Cantoni, C., Pinget, G.V., Zhou, Y., and Piccio, L. (2021). Targeting the gut to treat multiple sclerosis. J Clin Invest 131. 10.1172/jci143774.
[55] Hauser, S.L., and Cree, B.A.C. (2020). Treatment of Multiple Sclerosis: A Review. Am J Med 133, 1380-1390.e1382. 10.1016/j.amjmed.2020.05.049.
[56] S2k-Leitlinie Diagnose und Therapie der Multiplen Sklerose, Neuromyelitis Optica Spektrum und MOG-IgG-assoziierte Erkrankungen – Living Guideline, AWMF-Register Nr. 030-050. (2023). AWMF online. https://register.awmf.org/de/leitlinien/detail/030-050.
[57] Bourque, J., and Hawiger, D. (2021). Current and Future Immunotherapies for Multiple Sclerosis. Mo Med 118, 334-339.
[58] Li, K., Wei, S., Hu, L., Yin, X., Mai, Y., Jiang, C., Peng, X., Cao, X., Huang, Z., Zhou, H., et al. (2020). Protection of Fecal Microbiota Transplantation in a Mouse Model of Multiple Sclerosis. Mediators Inflamm 2020, 2058272. 10.1155/2020/2058272.
[59] Laeeq, T., Vongsavath, T., Tun, K.M., and Hong, A.S. (2023). The Potential Role of Fecal Microbiota Transplant in the Reversal or Stabilization of Multiple Sclerosis Symptoms: A Literature Review on Efficacy and Safety. Microorganisms 11. 10.3390/microorganisms11122840.
[60] Makkawi, S., Camara-Lemarroy, C., and Metz, L. (2018). Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm 5, e459. 10.1212/nxi.0000000000000459.
[61] Al, K.F., Craven, L.J., Gibbons, S., Parvathy, S.N., Wing, A.C., Graf, C., Parham, K.A., Kerfoot, S.M., Wilcox, H., Burton, J.P., et al. (2022). Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: A pilot randomized controlled trial. Mult Scler J Exp Transl Clin 8, 20552173221086662. 10.1177/20552173221086662.
[62] Agranoff, B.W., and Goldberg, D. (1974). Diet and the geographical distribution of multiple sclerosis. Lancet 2, 1061-1066. 10.1016/s0140-6736(74)92163-1.
[63] Esposito, S., Bonavita, S., Sparaco, M., Gallo, A., and Tedeschi, G. (2018). The role of diet in multiple sclerosis: A review. Nutr Neurosci 21, 377-390. 10.1080/1028415x.2017.1303016.
[64] Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.H., May, C., Wilck, N., et al. (2015). Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 43, 817-829. 10.1016/j.immuni.2015.09.007.
[65] Kafami, L., Raza, M., Razavi, A., Mirshafiey, A., Movahedian, M., and Khorramizadeh, M.R. (2010). Intermittent feeding attenuates clinical course of experimental autoimmune encephalomyelitis in C57BL/6 mice. Avicenna J Med Biotechnol 2, 47-52.
[66] Zhang, C., Li, S., Yang, L., Huang, P., Li, W., Wang, S., Zhao, G., Zhang, M., Pang, X., Yan, Z., et al. (2013). Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4, 2163. 10.1038/ncomms3163.
[67] Cignarella, F., Cantoni, C., Ghezzi, L., Salter, A., Dorsett, Y., Chen, L., Phillips, D., Weinstock, G.M., Fontana, L., Cross, A.H., et al. (2018). Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab 27, 1222-1235.e1226. 10.1016/j.cmet.2018.05.006.
[68] Javanbakht, P., Taghizadeh, F., Takabi, F.S., Tajik, M., Iranshahi, S., Pasbakhsh, P., Kashani, I.R., and Mojaverrostami, S. (2023). Effects of Calorie Restriction on Multiple Sclerosis: A Review of the Preclinical and Clinical Studies. Neurochem Res 48, 1597-1610. 10.1007/s11064-023-03874-3.
[69] Lee, J.E., Titcomb, T.J., Bisht, B., Rubenstein, L.M., Louison, R., and Wahls, T.L. (2021). A Modified MCT-Based Ketogenic Diet Increases Plasma β-Hydroxybutyrate but Has Less Effect on Fatigue and Quality of Life in People with Multiple Sclerosis Compared to a Modified Paleolithic Diet: A Waitlist-Controlled, Randomized Pilot Study. J Am Coll Nutr 40, 13-25. 10.1080/07315724.2020.1734988.
[70] Brenton, J.N., Lehner-Gulotta, D., Woolbright, E., Banwell, B., Bergqvist, A.G.C., Chen, S., Coleman, R., Conaway, M., and Goldman, M.D. (2022). Phase II study of ketogenic diets in relapsing multiple sclerosis: safety, tolerability and potential clinical benefits. J Neurol Neurosurg Psychiatry 93, 637-644. 10.1136/jnnp-2022-329074.
[71] Yadav, V., Marracci, G., Kim, E., Spain, R., Cameron, M., Overs, S., Riddehough, A., Li, D.K., McDougall, J., Lovera, J., et al. (2016). Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord 9, 80-90. 10.1016/j.msard.2016.07.001.
[72] Bock, M., Steffen, F., Zipp, F., and Bittner, S. (2022). Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm 9. 10.1212/nxi.0000000000001102.
[73] Wijeweera, G., Wijekoon, N., Gonawala, L., Imran, Y., Mohan, C., and De Silva, K.R.D. (2023). Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. Evid Based Complement Alternat Med 2023, 5583996. 10.1155/2023/5583996.
[74] Johnson, S.K., Diamond, B.J., Rausch, S., Kaufman, M., Shiflett, S.C., and Graves, L. (2006). The effect of Ginkgo biloba on functional measures in multiple sclerosis: a pilot randomized controlled trial. Explore (NY) 2, 19-24. 10.1016/j.explore.2005.10.007.
[75] Zajicek, J.P., Hobart, J.C., Slade, A., Barnes, D., and Mattison, P.G. (2012). Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry 83, 1125-1132. 10.1136/jnnp-2012-302468.
[76] Bellmann-Strobl, J., Paul, F., Wuerfel, J., Dörr, J., Infante-Duarte, C., Heidrich, E., Körtgen, B., Brandt, A., Pfüller, C., Radbruch, H., et al. (2021). Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis: A Randomized, Placebo-Controlled Trial. Neurol Neuroimmunol Neuroinflamm 8. 10.1212/nxi.0000000000000981.
[77] Lovera, J., Ramos, A., Devier, D., Garrison, V., Kovner, B., Reza, T., Koop, D., Rooney, W., Foundas, A., and Bourdette, D. (2015). Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: Phase I single group and phase II randomized placebo-controlled studies. J Neurol Sci 358, 46-52. 10.1016/j.jns.2015.08.006.
[78] Costantini, E., Masciarelli, E., Casorri, L., Di Luigi, M., and Reale, M. (2022). Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 16, 985943. 10.3389/fncel.2022.985943.
[79] Jiang, J., Chu, C., Wu, C., Wang, C., Zhang, C., Li, T., Zhai, Q., Yu, L., Tian, F., and Chen, W. (2021). Efficacy of probiotics in multiple sclerosis: a systematic review of preclinical trials and meta-analysis of randomized controlled trials. Food Funct 12, 2354-2377. 10.1039/d0fo03203d.
[80] Valizadeh, S., Majdi Seghinsara, A., Maleki Chollou, K., Bahadori, A., Abbaszadeh, S., Taghdir, M., Behniafar, H., and Riahi, S.M. (2021). The efficacy of probiotics in experimental autoimmune encephalomyelitis (an animal model for MS): a systematic review and meta-analysis. Lett Appl Microbiol 73, 408-417. 10.1111/lam.13543.
[81] Rahimlou, M., Hosseini, S.A., Majdinasab, N., Haghighizadeh, M.H., and Husain, D. (2022). Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 25, 411-422. 10.1080/1028415x.2020.1758887.
[82] Salami, M., Kouchaki, E., Asemi, Z., and Tamtaji, O.R. (2019). How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. Journal of Functional Foods 52, 8-13. https://doi.org/10.1016/j.jff.2018.10.023.
[83] Tankou, S.K., Regev, K., Healy, B.C., Cox, L.M., Tjon, E., Kivisakk, P., Vanande, I.P., Cook, S., Gandhi, R., Glanz, B., et al. (2018). Investigation of probiotics in multiple sclerosis. Multiple Sclerosis Journal 24, 58-63. 10.1177/1352458517737390.
[84] Streit, F., Zillich, L., Frank, J., Kleineidam, L., Wagner, M., Baune, B.T., Klinger-König, J., Grabe, H.J., Pabst, A., Riedel-Heller, S.G., et al. (2023). Lifetime and current depression in the German National Cohort (NAKO). World J Biol Psychiatry 24, 865-880. 10.1080/15622975.2021.2014152.
[85] Links between gut microbes and depression strengthened. (2019). Nature 566, 7. 10.1038/d41586-019-00483-5.
[86] S3-Leitlinie Nationale VersorgungsLeitlinie Unipolare Depression, AWMF-Register Nr. nvl – 005. (2022). AWMF online. https://register.awmf.org/de/leitlinien/detail/nvl-005.
[87] Hu, B., Das, P., Lv, X., Shi, M., Aa, J., Wang, K., Duan, L., Gilbert Jack, A., Nie, Y., and Wu, X.-L. (2022). Effects of ‘Healthy’ Fecal Microbiota Transplantation against the Deterioration of Depression in Fawn-Hooded Rats. mSystems 7, e00218-00222. 10.1128/msystems.00218-22.
[88] Yankelevitch-Yahav, R., Franko, M., Huly, A., and Doron, R. (2015). The forced swim test as a model of depressive-like behavior. J Vis Exp. 10.3791/52587.
[89] Green, J.E., McGuinness, A.J., Berk, M., Castle, D., Athan, E., Hair, C., Strandwitz, P., Loughman, A., Nierenberg, A.A., Cryan, J.F., et al. (2023). Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot Feasibility Stud 9, 5. 10.1186/s40814-023-01235-z.
[90] Doll, J.P.K., Vázquez-Castellanos, J.F., Schaub, A.C., Schweinfurth, N., Kettelhack, C., Schneider, E., Yamanbaeva, G., Mählmann, L., Brand, S., Beglinger, C., et al. (2022). Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression-Case Report. Front Psychiatry 13, 815422. 10.3389/fpsyt.2022.815422.
[91] Liu, L., Wang, H., Chen, X., Zhang, Y., Zhang, H., and Xie, P. (2023). Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 90, 104527. 10.1016/j.ebiom.2023.104527.
[92] Soh, N.L., and Walter, G. (2011). Tryptophan and depression: can diet alone be the answer? Acta Neuropsychiatrica 23, 3-11. https://doi.org/10.1111/j.1601-5215.2010.00508.x.
[93] Selvaraj, R., Selvamani, T.Y., Zahra, A., Malla, J., Dhanoa, R.K., Venugopal, S., Shoukrie, S.I., Hamouda, R.K., and Hamid, P. (2022). Association Between Dietary Habits and Depression: A Systematic Review. Cureus 14, e32359. 10.7759/cureus.32359.
[94] Lassale, C., Batty, G.D., Baghdadli, A., Jacka, F., Sánchez-Villegas, A., Kivimäki, M., and Akbaraly, T. (2019). Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry 24, 965-986. 10.1038/s41380-018-0237-8.
[95] Jacka, F.N., O’Neil, A., Opie, R., Itsiopoulos, C., Cotton, S., Mohebbi, M., Castle, D., Dash, S., Mihalopoulos, C., Chatterton, M.L., et al. (2017). A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Medicine 15, 23. 10.1186/s12916-017-0791-y.
[96] Bayes, J., Schloss, J., and Sibbritt, D. (2022). The effect of a Mediterranean diet on the symptoms of depression in young males (the „AMMEND: A Mediterranean Diet in MEN with Depression“ study): a randomized controlled trial. Am J Clin Nutr 116, 572-580. 10.1093/ajcn/nqac106.
[97] Ocklenburg, S., and Borawski, J. (2021). Vegetarian diet and depression scores: A meta-analysis. Journal of Affective Disorders 294, 813-815. https://doi.org/10.1016/j.jad.2021.07.098.
[98] Hopwood, C.J. (2022). The link between vegetarian diet and depression might be explained by depression among meat-reducers. Food Quality and Preference 102, 104679. https://doi.org/10.1016/j.foodqual.2022.104679.
[99] Alli, S.R., Gorbovskaya, I., Liu, J.C.W., Kolla, N.J., Brown, L., and Müller, D.J. (2022). The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. Int J Mol Sci 23. 10.3390/ijms23094494.
[100] He, Q., Si, C., Sun, Z., Chen, Y., and Zhang, X. (2022). The Intervention of Prebiotics on Depression via the Gut-Brain Axis. Molecules 27. 10.3390/molecules27123671.
[101] Ng, Q.X., Venkatanarayanan, N., and Ho, C.Y. (2017). Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis. J Affect Disord 210, 211-221. 10.1016/j.jad.2016.12.048.
[102] Chen, L., Liu, Y., Tang, Z., Shi, X., Song, Z., Cao, F., Wei, P., Li, M., Li, X., Jiang, D., et al. (2021). Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats. Biomedicine & Pharmacotherapy 135, 111131. https://doi.org/10.1016/j.biopha.2020.111131.
[103] Pferschy-Wenzig, E.-M., Pausan, M.R., Ardjomand-Woelkart, K., Röck, S., Ammar, R.M., Kelber, O., Moissl-Eichinger, C., and Bauer, R. (2022). Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 14, 2111.
[104] Korczak, M., Pilecki, M., Granica, S., Gorczynska, A., Pawłowska, K.A., and Piwowarski, J.P. (2023). Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. Phytomedicine 111, 154642. https://doi.org/10.1016/j.phymed.2023.154642.
[105] Nematolahi, P., Mehrabani, M., Karami-Mohajeri, S., and Dabaghzadeh, F. (2018). Effects of Rosmarinus officinalis L. on memory performance, anxiety, depression, and sleep quality in university students: A randomized clinical trial. Complementary Therapies in Clinical Practice 30, 24-28. https://doi.org/10.1016/j.ctcp.2017.11.004.
[106] Guo, Y., Xie, J., Li, X., Yuan, Y., Zhang, L., Hu, W., Luo, H., Yu, H., and Zhang, R. (2018). Antidepressant Effects of Rosemary Extracts Associate With Anti-inflammatory Effect and Rebalance of Gut Microbiota. Front Pharmacol 9, 1126. 10.3389/fphar.2018.01126.
[107] Sarris, J., Ravindran, A., Yatham, L.N., Marx, W., Rucklidge, J.J., McIntyre, R.S., Akhondzadeh, S., Benedetti, F., Caneo, C., Cramer, H., et al. (2022). Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J Biol Psychiatry 23, 424-455. 10.1080/15622975.2021.2013041.
[108] Merkouris, E., Mavroudi, T., Miliotas, D., Tsiptsios, D., Serdari, A., Christidi, F., Doskas, T.K., Mueller, C., and Tsamakis, K. (2024). Probiotics’ Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014–2023 Clinical Trials. Microorganisms 12, 411.
[109] Jach, M.E., Serefko, A., Szopa, A., Sajnaga, E., Golczyk, H., Santos, L.S., Borowicz-Reutt, K., and Sieniawska, E. (2023). The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 28. 10.3390/molecules28073213.
[110] Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., Cazaubiel, M., and Cazaubiel, J.-M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition 105, 755-764. 10.1017/S0007114510004319.
[111] Kazemi, A., Noorbala, A.A., Azam, K., Eskandari, M.H., and Djafarian, K. (2019). Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin Nutr 38, 522-528. 10.1016/j.clnu.2018.04.010.
[112] Gawlik-Kotelnicka, O., Margulska, A., Płeska, K., Skowrońska, A., and Strzelecki, D. (2024). Metabolic Status Influences Probiotic Efficacy for Depression-PRO-DEMET Randomized Clinical Trial Results. Nutrients 16. 10.3390/nu16091389.
[113] Rudzki, L., Ostrowska, L., Pawlak, D., Małus, A., Pawlak, K., Waszkiewicz, N., and Szulc, A. (2019). Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100, 213-222. 10.1016/j.psyneuen.2018.10.010.
[114] Krammer, H., Storr, M., Madisch, A., and Riffel, J. (2021). Reizdarmbehandlung mit Lactobacillus plantarum 299v: Längere Einnahme verstärkt Behandlungserfolg–Ergebnisse einer nichtinterventionellen Studie. Zeitschrift für Gastroenterologie 59, 125-134.
[115] Schaub, A.C., Schneider, E., Vazquez-Castellanos, J.F., Schweinfurth, N., Kettelhack, C., Doll, J.P.K., Yamanbaeva, G., Mählmann, L., Brand, S., Beglinger, C., et al. (2022). Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Transl Psychiatry 12, 227. 10.1038/s41398-022-01977-z.
[1] Ma, Z.S., and Li, L. (2017). Quantifying the human vaginal community state types (CSTs) with the species specificity index. PeerJ 5, e3366.
[2] Petrova, M.I., Reid, G., Vaneechoutte, M., and Lebeer, S. (2017). Lactobacillus iners: Friend or Foe? Trends Microbiol 25, 182-191. 10.1016/j.tim.2016.11.007.
[3] Macias-Paz, I.U., Pérez-Hernández, S., Tavera-Tapia, A., Luna-Arias, J.P., Guerra-Cárdenas, J.E., and Reyna-Beltrán, E. (2023). Candida albicans the main opportunistic pathogenic fungus in humans. Revista Argentina de Microbiología 55, 189-198. https://doi.org/10.1016/j.ram.2022.08.003.
[4] France, M., Alizadeh, M., Brown, S., Ma, B., and Ravel, J. (2022). Towards a deeper understanding of the vaginal microbiota. Nat Microbiol 7, 367-378. 10.1038/s41564-022-01083-2.
[5] Abou Chacra, L., Fenollar, F., and Diop, K. (2021). Bacterial Vaginosis: What Do We Currently Know? Front Cell Infect Microbiol 11, 672429. 10.3389/fcimb.2021.672429.
[6] bei bakterieller Vaginose, B.B. (2014). Bakterielle Vaginose. Phasenkontrast-Mikroskopie in der Frauenarztpraxis, 149.
[7] Wu, S., Hugerth, L.W., Schuppe-Koistinen, I., and Du, J. (2022). The right bug in the right place: opportunities for bacterial vaginosis treatment. npj Biofilms and Microbiomes 8, 34. 10.1038/s41522-022-00295-y.
[8] Swidsinski, A., Mendling, W., Loening-Baucke, V., Ladhoff, A., Swidsinski, S., Hale, L.P., and Lochs, H. (2005). Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106, 1013-1023. 10.1097/01.AOG.0000183594.45524.d2.
[9] Swidsinski, A., Loening-Baucke, V., Swidsinski, S., Sobel, J.D., Dörffel, Y., and Guschin, A. (2022). Clue Cells and Pseudo Clue Cells in Different Morphotypes of Bacterial Vaginosis. Front Cell Infect Microbiol 12, 905739. 10.3389/fcimb.2022.905739.
[10] Gardner, H.L., and Dukes, C.D. (1955). Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified “nonspecific” vaginitis. American journal of obstetrics and gynecology 69, 962-976.
[11] Money, D. (2005). The laboratory diagnosis of bacterial vaginosis. Can J Infect Dis Med Microbiol 16, 77-79. 10.1155/2005/230319.
[12] Kraus, D. (2024). Hohe Therapieversagensquote wegen polymikrobiellem Biofilm: S2k-Leitlinie zur bakteriellen Vaginose. gynäkologie+ geburtshilfe 29, 55-57.
[13] Chen, R., Li, R., Qing, W., Zhang, Y., Zhou, Z., Hou, Y., Shi, Y., Zhou, H., and Chen, M. (2022). Probiotics are a good choice for the treatment of bacterial vaginosis: a meta-analysis of randomized controlled trial. Reproductive Health 19, 137. 10.1186/s12978-022-01449-z.
[14] Abbe, C., and Mitchell, C.M. (2023). Bacterial vaginosis: a review of approaches to treatment and prevention. Front Reprod Health 5, 1100029. 10.3389/frph.2023.1100029.
[15] Han, Y., and Ren, Q.-l. (2021). Does probiotics work for bacterial vaginosis and vulvovaginal candidiasis. Current Opinion in Pharmacology 61, 83-90. https://doi.org/10.1016/j.coph.2021.09.004.
[16] V, D.E.L., Lazzeri, E., Governini, L., Cuppone, A.M., Colombini, L., Teodori, L., Ciprandi, G., Iannelli, F., and Pozzi, G. (2023). Vaginal colonization of women after oral administration of Lactobacillus crispatus strain NTCVAG04 from the human microbiota. Minerva Obstet Gynecol 75, 432-439. 10.23736/s2724-606x.22.05087-4.
[17] El Aila, N.A., Tency, I., Claeys, G., Verstraelen, H., Saerens, B., Santiago, G.L., De Backer, E., Cools, P., Temmerman, M., Verhelst, R., and Vaneechoutte, M. (2009). Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora. BMC Infect Dis 9, 167. 10.1186/1471-2334-9-167.
[18] Ouwehand, A., and Lehtoranta, L. (2021). Probiotics for vaginal health; oral consumption vs. local application.
[19] Torky, H.A., El-Desouky, E.S., Hussein, A., Abo-Louz, A., Mohammed, A., El-Hamid, A.A., Galal, S., Tawfick, M.M., and Marie, H. (2021). Relationship Between Ano-vaginal Distance and Bacterial Vaginosis (Cross-sectional Study). Reprod Sci 28, 2310-2313. 10.1007/s43032-021-00514-5.
[20] Antonio, M.A., Rabe, L.K., and Hillier, S.L. (2005). Colonization of the rectum by Lactobacillus species and decreased risk of bacterial vaginosis. J Infect Dis 192, 394-398. 10.1086/430926.
[21] Homayouni, A., Bastani, P., Ziyadi, S., Mohammad-Alizadeh-Charandabi, S., Ghalibaf, M., Mortazavian, A.M., and Mehrabany, E.V. (2014). Effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis 18, 79-86. 10.1097/LGT.0b013e31829156ec.
[22] Lehtoranta, L., Ala-Jaakkola, R., Laitila, A., and Maukonen, J. (2022). Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Frontiers in Microbiology 13. 10.3389/fmicb.2022.819958.
[23] Martinez, R.C., Franceschini, S.A., Patta, M.C., Quintana, S.M., Gomes, B.C., De Martinis, E.C., and Reid, G. (2009). Improved cure of bacterial vaginosis with single dose of tinidazole (2 g), Lactobacillus rhamnosus GR-1, and Lactobacillus reuteri RC-14: a randomized, double-blind, placebo-controlled trial. Can J Microbiol 55, 133-138. 10.1139/w08-102.
[24] Anukam, K., Osazuwa, E., Ahonkhai, I., Ngwu, M., Osemene, G., Bruce, A.W., and Reid, G. (2006). Augmentation of antimicrobial metronidazole therapy of bacterial vaginosis with oral probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14: randomized, double-blind, placebo controlled trial. Microbes Infect 8, 1450-1454. 10.1016/j.micinf.2006.01.003.
[25] Russo, R., Karadja, E., and De Seta, F. (2019). Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: a double blind, placebo controlled, randomised clinical trial. Benef Microbes 10, 19-26. 10.3920/bm2018.0075.
[26] Larsson, P.G., Stray-Pedersen, B., Ryttig, K.R., and Larsen, S. (2008). Human lactobacilli as supplementation of clindamycin to patients with bacterial vaginosis reduce the recurrence rate; a 6-month, double-blind, randomized, placebo-controlled study. BMC Womens Health 8, 3. 10.1186/1472-6874-8-3.
[27] Yockey, L.J., Hussain, F.A., Bergerat, A., Reissis, A., Worrall, D., Xu, J., Gomez, I., Bloom, S.M., Mafunda, N.A., Kelly, J., et al. (2022). Screening and characterization of vaginal fluid donations for vaginal microbiota transplantation. Scientific Reports 12, 17948. 10.1038/s41598-022-22873-y.
[28] Lev-Sagie, A., Goldman-Wohl, D., Cohen, Y., Dori-Bachash, M., Leshem, A., Mor, U., Strahilevitz, J., Moses, A.E., Shapiro, H., Yagel, S., and Elinav, E. (2019). Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med 25, 1500-1504. 10.1038/s41591-019-0600-6.
[29] Joseph, R.J., Ser, H.L., Kuai, Y.H., Tan, L.T., Arasoo, V.J.T., Letchumanan, V., Wang, L., Pusparajah, P., Goh, B.H., Ab Mutalib, N.S., et al. (2021). Finding a Balance in the Vaginal Microbiome: How Do We Treat and Prevent the Occurrence of Bacterial Vaginosis? Antibiotics (Basel) 10. 10.3390/antibiotics10060719.
[30] Mizgier, M., Jarzabek-Bielecka, G., Mruczyk, K., and Kedzia, W. (2020). The role of diet and probiotics in prevention and treatment of bacterial vaginosis and vulvovaginal candidiasis in adolescent girls and non-pregnant women. Ginekol Pol 91, 412-416. 10.5603/gp.2020.0070.
[31] Noormohammadi, M., Eslamian, G., Kazemi, S.N., and Rashidkhani, B. (2022). Dietary acid load, alternative healthy eating index score, and bacterial vaginosis: is there any association? A case-control study. BMC Infect Dis 22, 803. 10.1186/s12879-022-07788-3.
[32] Neggers, Y.H., Nansel, T.R., Andrews, W.W., Schwebke, J.R., Yu, K.F., Goldenberg, R.L., and Klebanoff, M.A. (2007). Dietary intake of selected nutrients affects bacterial vaginosis in women. J Nutr 137, 2128-2133. 10.1093/jn/137.9.2128.
[33] Noormohammadi, M., Eslamian, G., Kazemi, S.N., and Rashidkhani, B. (2022). Association between dietary patterns and bacterial vaginosis: a case-control study. Sci Rep 12, 12199. 10.1038/s41598-022-16505-8.
[34] Thoma, M.E., Klebanoff, M.A., Rovner, A.J., Nansel, T.R., Neggers, Y., Andrews, W.W., and Schwebke, J.R. (2011). Bacterial vaginosis is associated with variation in dietary indices. J Nutr 141, 1698-1704. 10.3945/jn.111.140541.
[35] Barrientos-Durán, A., Fuentes-López, A., de Salazar, A., Plaza-Díaz, J., and García, F. (2020). Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 12. 10.3390/nu12020419.
[36] Noormohammadi, M., Eslamian, G., Kazemi, S.N., and Rashidkhani, B. (2022). Association between dietary patterns and bacterial vaginosis: a case–control study. Scientific Reports 12, 12199. 10.1038/s41598-022-16505-8.
[37] Shivakoti, R., Tuddenham, S., Caulfield, L.E., Murphy, C., Robinson, C., Ravel, J., Ghanem, K.G., and Brotman, R.M. (2020). Dietary macronutrient intake and molecular-bacterial vaginosis: Role of fiber. Clin Nutr 39, 3066-3071. 10.1016/j.clnu.2020.01.011.
[38] Coste, I., Judlin, P., Lepargneur, J.P., and Bou-Antoun, S. (2012). Safety and efficacy of an intravaginal prebiotic gel in the prevention of recurrent bacterial vaginosis: a randomized double-blind study. Obstet Gynecol Int 2012, 147867. 10.1155/2012/147867.
[39] Retnoningrum, A., Nurseta, T., Prawiro, S., Endharti, A., and Wahyuni, E. (2018). The Effects of Glucomannan Hydrolysates and BV Gel on Nugent Score, Treg Cell Percentage, and TGF-? level in Bacterial Vaginosis. Indonesian Journal of Medicine 3, 33-43. 10.26911/theijmed.2018.03.01.05.
[40] Amendment „Neue Nomenklatur zur MASLD (Metabolic Dysfunction Associated Steatotic Liver Disease; metabolische Dysfunktion assoziierte steatotische Lebererkrankung)“ zur S2k-Leitlinie „Nicht-alkoholische Fettlebererkrankung“ (v.2.0 / April 2022) der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – März 2024 – AWMF Registration No.: 021-025. (2024). AWMF online, 1-65.
[41] Najafi, M.N., Rezaee, R., Najafi, N.N., Mirzaee, F., Burykina, T.I., Lupuliasa, D., Arsene, A.L., and Ghazanfarpour, M. (2019). Herbal medicines against bacterial vaginosis in women of reproductive age: A systematic review. Farmacia 67, 931-940.
[42] Masoudi, M., Miraj, S., and Rafieian-Kopaei, M. (2016). Comparison of the Effects of Myrtus Communis L, Berberis Vulgaris and Metronidazole Vaginal Gel alone for the Treatment of Bacterial Vaginosis. J Clin Diagn Res 10, Qc04-07. 10.7860/jcdr/2016/17211.7392.
[43] Sala, A., Ardizzoni, A., Spaggiari, L., Vaidya, N., van der Schaaf, J., Rizzato, C., Cermelli, C., Mogavero, S., Krüger, T., Himmel, M., et al. (2023). A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 14, e0010723. 10.1128/mbio.00107-23.
[44] Papon, N., and Dijck, P.V. (2021). A Complex Microbial Interplay Underlies Recurrent Vulvovaginal Candidiasis Pathobiology. mSystems 6, 10.1128/msystems.01066-01021. doi:10.1128/msystems.01066-21.
[45] Sun, Z., Ge, X., Qiu, B., Xiang, Z., Jiang, C., Wu, J., and Li, Y. (2023). Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy. Front Cell Infect Microbiol 13, 1123026. 10.3389/fcimb.2023.1123026.
[46] Bertholf, M.E., and Stafford, M.J. (1983). Colonization of Candida albicans in vagina, rectum, and mouth. J Fam Pract 16, 919-924.
[47] Strijbis, K., Yilmaz, Ö.H., Dougan, S.K., Esteban, A., Gröne, A., Kumamoto, C.A., and Ploegh, H.L. (2014). Intestinal colonization by Candida albicans alters inflammatory responses in Bruton’s tyrosine kinase-deficient mice. PLoS One 9, e112472.
[48] Gaziano, R., Sabbatini, S., and Monari, C. (2023). The interplay between Candida albicans, vaginal mucosa, host Immunity and resident microbiota in health and disease: An overview and future perspectives. Microorganisms 11, 1211.
[49] Liu, P., Lu, Y., Li, R., and Chen, X. (2023). Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Frontiers in Cellular and Infection Microbiology 13, 1153894.
[50] Rodríguez-Cerdeira, C., Martínez-Herrera, E., Carnero-Gregorio, M., López-Barcenas, A., Fabbrocini, G., Fida, M., El-Samahy, M., and González-Cespón, J.L. (2020). Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol 11, 544480. 10.3389/fmicb.2020.544480.
[51] Pereira, L.C., Correia, A.F., da Silva, Z.D.L., de Resende, C.N., Brandão, F., Almeida, R.M., and de Medeiros Nóbrega, Y.K. (2021). Vulvovaginal candidiasis and current perspectives: new risk factors and laboratory diagnosis by using MALDI TOF for identifying species in primary infection and recurrence. Eur J Clin Microbiol Infect Dis 40, 1681-1693. 10.1007/s10096-021-04199-1.
[52] Rafiq, N.B. (2023). Candidiasis. In StatPearls [Internet], (StatPearls Publishing).
[53] Farr, A., Effendy, I., Tirri, B.F., Hof, H., Mayser, P., Petricevic, L., Ruhnke, M., Schaller, M., Schäfer, A.P.A., Willinger, B., and Mendling, W. (2021). Vulvovaginal Candidosis (Excluding Mucocutaneous Candidosis): Guideline of the German (DGGG), Austrian (OEGGG) and Swiss (SGGG) Society of Gynecology and Obstetrics (S2k-Level, AWMF Registry Number 015/072, September 2020). Geburtshilfe Frauenheilkd 81, 398-421. 10.1055/a-1345-8793.
[54] van Riel, S., Lardenoije, C., Oudhuis, G.J., and Cremers, N.A.J. (2021). Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 7. 10.3390/jof7080664.
[55] Disha, T., and Haque, F. (2022). Prevalence and Risk Factors of Vulvovaginal Candidosis during Pregnancy: A Review. Infect Dis Obstet Gynecol 2022, 6195712. 10.1155/2022/6195712.
[56] Zeng, X., Zhang, Y., Zhang, T., Xue, Y., Xu, H., and An, R. (2018). Risk Factors of Vulvovaginal Candidiasis among Women of Reproductive Age in Xi’an: A Cross-Sectional Study. Biomed Res Int 2018, 9703754. 10.1155/2018/9703754.
[57] Jeziorek, M., Frej-Mądrzak, M., and Choroszy-Król, I. (2019). The influence of diet on gastrointestinal Candida spp. colonization and the susceptibility of Candida spp. to antifungal drugs. Rocz Panstw Zakl Hig 70, 195-200. 10.32394/rpzh.2019.0070.
[58] Mitsou, E.K., Kakali, A., Antonopoulou, S., Mountzouris, K.C., Yannakoulia, M., Panagiotakos, D.B., and Kyriacou, A. (2017). Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 117, 1645-1655. 10.1017/s0007114517001593.
[59] Jawhara, S. (2023). Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection. Microorganisms 11. 10.3390/microorganisms11061556.
[60] Felix, T.C., de Brito Röder, D.V.D., and Dos Santos Pedroso, R. (2019). Alternative and complementary therapies for vulvovaginal candidiasis. Folia Microbiol (Praha) 64, 133-141. 10.1007/s12223-018-0652-x.
[61] Russo, R., Superti, F., Karadja, E., and De Seta, F. (2019). Randomised clinical trial in women with Recurrent Vulvovaginal Candidiasis: Efficacy of probiotics and lactoferrin as maintenance treatment. Mycoses 62, 328-335. https://doi.org/10.1111/myc.12883.
[62] Martinez, R.C., Franceschini, S.A., Patta, M.C., Quintana, S.M., Candido, R.C., Ferreira, J.C., De Martinis, E.C., and Reid, G. (2009). Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Lett Appl Microbiol 48, 269-274. 10.1111/j.1472-765X.2008.02477.x.
[63] González-Burgos, E., and Gómez-Serranillos, M.P. (2018). Natural Products for Vulvovaginal Candidiasis Treatment: Evidence from Clinical Trials. Curr Top Med Chem 18, 1324-1332. 10.2174/1568026618666181002111341.
[64] D’Agostino, M., Tesse, N., Frippiat, J.P., Machouart, M., and Debourgogne, A. (2019). Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 24. 10.3390/molecules24203713.
[65] Mertas, A., Garbusińska, A., Szliszka, E., Jureczko, A., Kowalska, M., and Król, W. (2015). The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains. Biomed Res Int 2015, 590470. 10.1155/2015/590470.
[66] Andrade, J.T., Fantini de Figueiredo, G., Cruz, L.F., Eliza de Morais, S., Souza, C.D.F., Pinto, F.C.H., Ferreira, J.M.S., and Araújo, M.G.F. (2019). Efficacy of curcumin in the treatment of experimental vulvovaginal candidiasis. Rev Iberoam Micol 36, 192-199. 10.1016/j.riam.2019.01.003.
[67] Zheng, D., Yue, D., Shen, J., Li, D., Song, Z., Huang, Y., Yong, J., and Li, Y. (2023). Berberine inhibits Candida albicans growth by disrupting mitochondrial function through the reduction of iron absorption. J Appl Microbiol 134. 10.1093/jambio/lxad276.
[68] Bravo-Chaucanés, C.P., Vargas-Casanova, Y., Chitiva-Chitiva, L.C., Ceballos-Garzon, A., Modesti-Costa, G., and Parra-Giraldo, C.M. (2022). Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J Fungi (Basel) 8. 10.3390/jof8080784.
[69] Azimi, H., Fallah-Tafti, M., Karimi-Darmiyan, M., and Abdollahi, M. (2011). A comprehensive review of vaginitis phytotherapy. Pak J Biol Sci 14, 960-966. 10.3923/pjbs.2011.960.966.
[70] Sadanandan, B., Vijayalakshmi, V., Ashrit, P., Babu, U.V., Sharath Kumar, L.M., Sampath, V., Shetty, K., Joglekar, A.P., and Awaknavar, R. (2023). Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 18, e0281035. 10.1371/journal.pone.0281035.
[71] Khodavandi, A., Alizadeh, F., Harmal, N.S., Sidik, S.M., Othman, F., Sekawi, Z., Jahromi, M.A.F., Ng, K.-P., and Chong, P.P. (2011). Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Microbiology Letters 315, 87-93. 10.1111/j.1574-6968.2010.02170.x.
[72] Ebrahimy, F., Dolatian, M., Moatar, F., and Majd, H.A. (2015). Comparison of the therapeutic effects of Garcin(®) and fluconazole on Candida vaginitis. Singapore Med J 56, 567-572. 10.11622/smedj.2015153.
[73] Bahadoran, P., Rokni, F.K., and Fahami, F. (2010). Investigating the therapeutic effect of vaginal cream containing garlic and thyme compared to clotrimazole cream for the treatment of mycotic vaginitis. Iran J Nurs Midwifery Res 15, 343-349.
[74] Sheidaei, S., Sadeghi, T., Jaafarnejad, F., Rajabi, O., and Najafzadeh, M. (2017). Herbal medicine and vaginal candidiasis in Iran: A review. Evidence Based Care 7, 71-77. 10.22038/EBCJ.2017.23002.1501.
[1] S2k-Leitlinie Nekrotisierende Enterokolitis (NEK) der Gesellschaft für Neonatologie und pädiatrische Intensivmedizin e.V. (GNPI) (AWMF 024-009). (2017). https://register.awmf.org/de/leitlinien/detail/024-009.
[2] Gephart, S.M., and Quinn, M. (2021). A Call to Action to Fight for Equity and End Necrotizing Enterocolitis Disparities. Adv Neonatal Care 21, 333-335. 10.1097/anc.0000000000000940.
[3] Rich, B.S., and Dolgin, S.E. (2017). Necrotizing Enterocolitis. Pediatr Rev 38, 552-559. 10.1542/pir.2017-0002.
[4] Murphy, K., Ross, R.P., Ryan, C.A., Dempsey, E.M., and Stanton, C. (2021). Probiotics, Prebiotics, and Synbiotics for the Prevention of Necrotizing Enterocolitis. Front Nutr 8, 667188. 10.3389/fnut.2021.667188.
[5] Smith, B., Bodé, S., Petersen, B.L., Jensen, T.K., Pipper, C., Kloppenborg, J., Boyé, M., Krogfelt, K.A., and Mølbak, L. (2011). Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis. BMC Microbiol 11, 73. 10.1186/1471-2180-11-73.
[6] Pammi, M., Cope, J., Tarr, P.I., Warner, B.B., Morrow, A.L., Mai, V., Gregory, K.E., Kroll, J.S., McMurtry, V., Ferris, M.J., et al. (2017). Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31. 10.1186/s40168-017-0248-8.
[7] Gomart, A., Vallée, A., and Lecarpentier, Y. (2021). Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 9, 713344. 10.3389/fped.2021.713344.
[8] Hackam, D.J., and Sodhi, C.P. (2018). Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol 6, 229-238.e221. 10.1016/j.jcmgh.2018.04.001.
[9] Mihi, B., and Good, M. (2019). Impact of Toll-Like Receptor 4 Signaling in Necrotizing Enterocolitis: The State of the Science. Clin Perinatol 46, 145-157. 10.1016/j.clp.2018.09.007.
[10] Hui, Y., Vestergaard, G., Deng, L., Kot, W.P., Thymann, T., Brunse, A., and Nielsen, D.S. (2022). Donor-dependent fecal microbiota transplantation efficacy against necrotizing enterocolitis in preterm pigs. NPJ Biofilms Microbiomes 8, 48. 10.1038/s41522-022-00310-2.
[11] Wu, H., Guo, K., Zhuo, Z., Zeng, R., Luo, Y., Yang, Q., Li, J., Jiang, R., Huang, Z., Sha, W., and Chen, H. (2022). Current therapy option for necrotizing enterocolitis: Practicalities and challenge. Front Pediatr 10, 954735. 10.3389/fped.2022.954735.
[12] Campos-Martinez, A.M., Expósito-Herrera, J., Gonzalez-Bolívar, M., Fernández-Marin, E., and Uberos, J. (2022). Evaluation of Risk and Preventive Factors for Necrotizing Enterocolitis in Premature Newborns. A Systematic Review of the Literature. Front Pediatr 10, 874976. 10.3389/fped.2022.874976.
[13] Sharif, S., Meader, N., Oddie, S.J., Rojas-Reyes, M.X., and McGuire, W. (2023). Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 7, Cd005496. 10.1002/14651858.CD005496.pub6.
[14] Lin, H.C., Hsu, C.H., Chen, H.L., Chung, M.Y., Hsu, J.F., Lien, R.I., Tsao, L.Y., Chen, C.H., and Su, B.H. (2008). Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122, 693-700. 10.1542/peds.2007-3007.
[15] Saengtawesin, V., Tangpolkaiwalsak, R., and Kanjanapattankul, W. (2014). Effect of oral probiotics supplementation in the prevention of necrotizing enterocolitis among very low birth weight preterm infants. J Med Assoc Thai 97 Suppl 6, S20-25.
[16] Härtel, C., Pagel, J., Rupp, J., Bendiks, M., Guthmann, F., Rieger-Fackeldey, E., Heckmann, M., Franz, A., Schiffmann, J.H., Zimmermann, B., et al. (2014). Prophylactic use of Lactobacillus acidophilus/Bifidobacterium infantis probiotics and outcome in very low birth weight infants. J Pediatr 165, 285-289.e281. 10.1016/j.jpeds.2014.04.029.
[17] Samuels, N., van de Graaf, R., Been, J.V., de Jonge, R.C., Hanff, L.M., Wijnen, R.M., Kornelisse, R.F., Reiss, I.K., and Vermeulen, M.J. (2016). Necrotising enterocolitis and mortality in preterm infants after introduction of probiotics: a quasi-experimental study. Sci Rep 6, 31643. 10.1038/srep31643.
[18] Guthmann, F., Arlettaz Mieth, R.P., Bucher, H.U., and Bührer, C. (2016). Short courses of dual-strain probiotics appear to be effective in reducing necrotising enterocolitis. Acta Paediatr 105, 255-259. 10.1111/apa.13280.
[19] Garabet, W., Wolters, K., Schelzig, H., and Rembe, J.-D. (2022). Postoperative Wundinfektionen. Gefässchirurgie 27, 452-462. 10.1007/s00772-022-00906-0.
[20] WHO (2018). WHO – Global guidelines for the prevention of surgical site infection. https://www.who.int/publications/i/item/9789241550475.
[21] Alverdy, J.C., Hyoju, S.K., Weigerinck, M., and Gilbert, J.A. (2017). The gut microbiome and the mechanism of surgical infection. Br J Surg 104, e14-e23. 10.1002/bjs.10405.
[22] Guyton, K., and Alverdy, J.C. (2017). The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 14, 43-54. 10.1038/nrgastro.2016.139.
[23] Seong, H., Lee, S.K., Cheon, J.H., Yong, D.E., Koh, H., Kang, Y.K., Jeong, W.Y., Lee, W.J., Sohn, Y., Cho, Y., et al. (2020). Fecal Microbiota Transplantation for multidrug-resistant organism: Efficacy and Response prediction. J Infect 81, 719-725. 10.1016/j.jinf.2020.09.003.
[24] S3-Leitlinie Klinische Ernährung in der Chirurgie der Deutsche Gesellschaft für Ernährungsmedizin e.V. (DGEM) und der Deutsche Gesellschaft für Chirurgie e.V. (DGCH) (AWMF 073-005). (2022). https://register.awmf.org/de/leitlinien/detail/073-005.
[25] Chowdhury, A.H., Adiamah, A., Kushairi, A., Varadhan, K.K., Krznaric, Z., Kulkarni, A.D., Neal, K.R., and Lobo, D.N. (2020). Perioperative Probiotics or Synbiotics in Adults Undergoing Elective Abdominal Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann Surg 271, 1036-1047. 10.1097/sla.0000000000003581.
[26] Liu, Z., Qin, H., Yang, Z., Xia, Y., Liu, W., Yang, J., Jiang, Y., Zhang, H., Yang, Z., Wang, Y., and Zheng, Q. (2011). Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery – a double-blind study. Aliment Pharmacol Ther 33, 50-63. 10.1111/j.1365-2036.2010.04492.x.
[27] Kotzampassi, K., Stavrou, G., Damoraki, G., Georgitsi, M., Basdanis, G., Tsaousi, G., and Giamarellos-Bourboulis, E.J. (2015). A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J Surg 39, 2776-2783. 10.1007/s00268-015-3071-z.
[28] Rayes, N., Seehofer, D., Theruvath, T., Mogl, M., Langrehr, J.M., Nüssler, N.C., Bengmark, S., and Neuhaus, P. (2007). Effect of enteral nutrition and synbiotics on bacterial infection rates after pylorus-preserving pancreatoduodenectomy: a randomized, double-blind trial. Ann Surg 246, 36-41. 10.1097/01.sla.0000259442.78947.19.
[29] Pisters, P.W., Hudec, W.A., Hess, K.R., Lee, J.E., Vauthey, J.N., Lahoti, S., Raijman, I., and Evans, D.B. (2001). Effect of preoperative biliary decompression on pancreaticoduodenectomy-associated morbidity in 300 consecutive patients. Ann Surg 234, 47-55. 10.1097/00000658-200107000-00008.
[30] Flesch, A.T., Tonial, S.T., Contu, P.C., and Damin, D.C. (2017). Perioperative synbiotics administration decreases postoperative infections in patients with colorectal cancer: a randomized, double-blind clinical trial. Rev Col Bras Cir 44, 567-573. 10.1590/0100-69912017006004.
[31] Fleischmann-Struzek, C., Schwarzkopf, D., and Reinhart, K. (2022). [Sepsis incidence in Germany and worldwide : Current knowledge and limitations of research using health claims data]. Med Klin Intensivmed Notfmed 117, 264-268. 10.1007/s00063-021-00777-5.
[32] Fakt oder Mythos? Der rote Strich als Sepsis-Symptom, Sepsis Stiftung. (2019). https://sepsis-stiftung.de/blog/fakt-oder-mythos-der-rote-strich-als-sepsis-symptom/.
[33] Brunkhorst, F.M., Weigand, M.A., Pletz, M., Gastmeier, P., Lemmen, S.W., Meier-Hellmann, A., Ragaller, M., Weyland, A., Marx, G., Bucher, M., et al. (2020). [S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare : Long version]. Med Klin Intensivmed Notfmed 115, 37-109. 10.1007/s00063-020-00685-0.
[34] Bode, C., Weis, S., Sauer, A., Wendel-Garcia, P., and David, S. (2023). Targeting the host response in sepsis: current approaches and future evidence. Crit Care 27, 478. 10.1186/s13054-023-04762-6.
[35] Potruch, A., Schwartz, A., and Ilan, Y. (2022). The role of bacterial translocation in sepsis: a new target for therapy. Therap Adv Gastroenterol 15, 17562848221094214. 10.1177/17562848221094214.
[36] Moron, R., Galvez, J., Colmenero, M., Anderson, P., Cabeza, J., and Rodriguez-Cabezas, M.E. (2019). The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 11. 10.3390/nu11123002.
[37] Haak, B.W., Prescott, H.C., and Wiersinga, W.J. (2018). Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front Immunol 9, 2042. 10.3389/fimmu.2018.02042.
[38] Ávila, P.R.M., Michels, M., Vuolo, F., Bilésimo, R., Burger, H., Milioli, M.V.M., Sonai, B., Borges, H., Carneiro, C., Abatti, M., et al. (2020). Protective effects of fecal microbiota transplantation in sepsis are independent of the modulation of the intestinal flora. Nutrition 73, 110727. 10.1016/j.nut.2020.110727.
[39] Kim, S.M., DeFazio, J.R., Hyoju, S.K., Sangani, K., Keskey, R., Krezalek, M.A., Khodarev, N.N., Sangwan, N., Christley, S., Harris, K.G., et al. (2020). Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat Commun 11, 2354. 10.1038/s41467-020-15545-w.
[40] Liu, Y., Zhao, W., Chen, W., Shen, X., Fu, R., Zhao, Y., and Liu, H. (2020). Effects of Early Enteral Nutrition on Immune Function and Prognosis of Patients With Sepsis on Mechanical Ventilation. J Intensive Care Med 35, 1053-1061. 10.1177/0885066618809893.
[41] McClave, S.A., Taylor, B.E., Martindale, R.G., Warren, M.M., Johnson, D.R., Braunschweig, C., McCarthy, M.S., Davanos, E., Rice, T.W., Cresci, G.A., et al. (2016). Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 40, 159-211. 10.1177/0148607115621863.
[42] S2k-Leitlinie Klinische Ernährung in der Intensivmedizin der Deutsche Gesellschaft für Ernährungsmedizin e.V. (DGEM) und der Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin e.V. (DIVI) (AWMF 073-004). (2018). https://register.awmf.org/de/leitlinien/detail/073-004.
[43] Prescott, H.C., Osterholzer, J.J., Langa, K.M., Angus, D.C., and Iwashyna, T.J. (2016). Late mortality after sepsis: propensity matched cohort study. Bmj 353, i2375. 10.1136/bmj.i2375.
[44] Wunder, C. (2020). Nosokomiale Infektionen in der Intensivmedizin. Anästh Intensivmed 61, 215-222. 10.19224/ai2020.215.
[45] McDonald, D., Ackermann, G., Khailova, L., Baird, C., Heyland, D., Kozar, R., Lemieux, M., Derenski, K., King, J., Vis-Kampen, C., et al. (2016). Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 1. 10.1128/mSphere.00199-16.
[46] Batra, P., Soni, K.D., and Mathur, P. (2020). Efficacy of probiotics in the prevention of VAP in critically ill ICU patients: an updated systematic review and meta-analysis of randomized control trials. J Intensive Care 8, 81. 10.1186/s40560-020-00487-8.
[47] Weng, H., Li, J.G., Mao, Z., Feng, Y., Wang, C.Y., Ren, X.Q., and Zeng, X.T. (2017). Probiotics for Preventing Ventilator-Associated Pneumonia in Mechanically Ventilated Patients: A Meta-Analysis with Trial Sequential Analysis. Front Pharmacol 8, 717. 10.3389/fphar.2017.00717.
[48] Morrow, L.E., Kollef, M.H., and Casale, T.B. (2010). Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 182, 1058-1064. 10.1164/rccm.200912-1853OC.
[49] Johnstone, J., Meade, M., Lauzier, F., Marshall, J., Duan, E., Dionne, J., Arabi, Y.M., Heels-Ansdell, D., Thabane, L., Lamarche, D., et al. (2021). Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. Jama 326, 1024-1033. 10.1001/jama.2021.13355.
[50] Shimizu, K., Yamada, T., Ogura, H., Mohri, T., Kiguchi, T., Fujimi, S., Asahara, T., Yamada, T., Ojima, M., Ikeda, M., and Shimazu, T. (2018). Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. Crit Care 22, 239. 10.1186/s13054-018-2167-x.
[51] Besselink, M.G., van Santvoort, H.C., Buskens, E., Boermeester, M.A., van Goor, H., Timmerman, H.M., Nieuwenhuijs, V.B., Bollen, T.L., van Ramshorst, B., Witteman, B.J., et al. (2008). Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371, 651-659. 10.1016/s0140-6736(08)60207-x.
[52] Expression of concern–Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. (2010). Lancet 375, 875-876. 10.1016/s0140-6736(10)60360-1.
[53] Gou, S., Yang, Z., Liu, T., Wu, H., and Wang, C. (2014). Use of probiotics in the treatment of severe acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials. Crit Care 18, R57. 10.1186/cc13809.
[54] Wan, Y.D., Zhu, R.X., Bian, Z.Z., and Sun, T.W. (2021). Effect of probiotics on length of hospitalization in mild acute pancreatitis: A randomized, double-blind, placebo-controlled trial. World J Gastroenterol 27, 224-232. 10.3748/wjg.v27.i2.224.
[55] Stadlbauer, V. (2015). Immunosuppression and probiotics: are they effective and safe? Benef Microbes 6, 823-828. 10.3920/bm2015.0065.
[56] BfArM (2018). Rote-Hand-Brief zu neuen Kontraindikationen von Saccharomyces boulardii (Saccharomyces cerevisiae HANSEN CBS 5926) bei schwerkranken oder immunsupprimierten Patienten. https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2018/rhb-saccharomyces_boulardii.html.
[57] Hempel, S., Newberry, S., Ruelaz, A., Wang, Z., Miles, J.N., Suttorp, M.J., Johnsen, B., Shanman, R., Slusser, W., Fu, N., et al. (2011). Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess (Full Rep), 1-645.
[58] Roser, M.R., H. (2023). HIV / AIDS – A global epidemic and the leading cause of death in some countries. https://ourworldindata.org/hiv-aids.
[59] Moran, J.A., Turner, S.R., and Marsden, M.D. (2022). Contribution of Sex Differences to HIV Immunology, Pathogenesis, and Cure Approaches. Front Immunol 13, 905773. 10.3389/fimmu.2022.905773.
[60] S2k-Deutsch-Östereichische-Leitlinie zur antiretroviralen Therapie der HIV-Infektion der Deutsche AIDS-Gesellschaft (DAIG) e.V. und der Österreichische AIDS-Gesellschaft (ÖAG) (AWMF 055-001). (2021). https://register.awmf.org/assets/guidelines/055-001m_Antiretrovirale_Therapie_der_HIV_Infektion__2021-06-verlaengert.pdf.
[61] Ergin, H.E., Inga, E.E., Maung, T.Z., Javed, M., and Khan, S. (2020). HIV, Antiretroviral Therapy and Metabolic Alterations: A Review. Cureus 12, e8059. 10.7759/cureus.8059.
[62] Nebenwirkungen bei HIV-Medikamenten. https://www.aidshilfe.de/nebenwirkungen-hiv-medikamenten.
[63] Parbie, P.K., Mizutani, T., Ishizaka, A., Kawana-Tachikawa, A., Runtuwene, L.R., Seki, S., Abana, C.Z., Kushitor, D., Bonney, E.Y., Ofori, S.B., et al. (2021). Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 11, 646467. 10.3389/fcimb.2021.646467.
[64] Deeks, S.G., Tracy, R., and Douek, D.C. (2013). Systemic effects of inflammation on health during chronic HIV infection. Immunity 39, 633-645. 10.1016/j.immuni.2013.10.001.
[65] Vujkovic-Cvijin, I., and Somsouk, M. (2019). HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep 16, 204-213. 10.1007/s11904-019-00441-w.
[66] Vujkovic-Cvijin, I., Rutishauser, R.L., Pao, M., Hunt, P.W., Lynch, S.V., McCune, J.M., and Somsouk, M. (2017). Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals. Gut Microbes 8, 440-450. 10.1080/19490976.2017.1334034.
[67] Serrano-Villar, S., Talavera-Rodríguez, A., Gosalbes, M.J., Madrid, N., Pérez-Molina, J.A., Elliott, R.J., Navia, B., Lanza, V.F., Vallejo, A., Osman, M., et al. (2021). Fecal microbiota transplantation in HIV: A pilot placebo-controlled study. Nat Commun 12, 1139. 10.1038/s41467-021-21472-1.
[68] Meinhold, C. (2011). HIV und Ernährung – eine Herausforderung DAZ 48/2011. https://www.deutsche-apotheker-zeitung.de/daz-az/2011/daz-48-2011/hiv-und-ernaehrung-eine-herausforderung.
[69] Carter, G.M., Esmaeili, A., Shah, H., Indyk, D., Johnson, M., Andreae, M., and Sacks, H.S. (2016). Probiotics in Human Immunodeficiency Virus Infection: A Systematic Review and Evidence Synthesis of Benefits and Risks. Open Forum Infect Dis 3, ofw164. 10.1093/ofid/ofw164.
[70] Zhang, X.L., Chen, M.H., Geng, S.T., Yu, J., Kuang, Y.Q., Luo, H.Y., and Wang, K.H. (2021). Effects of Probiotics on Diarrhea and CD4 Cell Count in People Living With HIV: A Systematic Review and Meta-Analysis. Front Pharmacol 12, 570520. 10.3389/fphar.2021.570520.
[1] Hanefeld, M. (2006). Das metabolische Syndrom. Diabetologie und Stoffwechsel 1, 303-304.
[2] Blüher, M., and Stumvoll, M. (2006). Das metabolische Syndrom-Mythen, Mechanismen, Management. DMW-Deutsche Medizinische Wochenschrift 131, 1167-1172.
[3] Green, M., Arora, K., and Prakash, S. (2020). Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci 21. 10.3390/ijms21082890.
[4] Vachharajani, V., and Granger, D.N. (2009). Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life 61, 424-430. 10.1002/iub.169.
[5] Kawai, T., Autieri, M.V., and Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320, C375-c391. 10.1152/ajpcell.00379.2020.
[6] Angelini, G., Russo, S., and Mingrone, G. (2024). Gut Microbiota and Obesity. In Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk, M. Federici, and R. Menghini, eds. (Springer International Publishing), pp. 129-156. 10.1007/978-3-031-35064-1_5.
[7] Liu, B.N., Liu, X.T., Liang, Z.H., and Wang, J.H. (2021). Gut microbiota in obesity. World J Gastroenterol 27, 3837-3850. 10.3748/wjg.v27.i25.3837.
[8] Ellulu, M.S., Patimah, I., Khaza’ai, H., Rahmat, A., and Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13, 851-863. 10.5114/aoms.2016.58928.
[9] Graf, D., Di Cagno, R., Fåk, F., Flint, H.J., Nyman, M., Saarela, M., and Watzl, B. (2015). Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26, 26164. 10.3402/mehd.v26.26164.
[10] Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417-1435. 10.3390/nu5041417.
[11] Tomova, A., Bukovsky, I., Rembert, E., Yonas, W., Alwarith, J., Barnard, N.D., and Kahleova, H. (2019). The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front Nutr 6, 47. 10.3389/fnut.2019.00047.
[12] Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73. 10.1186/s12967-017-1175-y.
[13] Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19, 576-585. 10.1038/nm.3145.
[14] Plamada, D., and Vodnar, D.C. (2021). Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 14, 137.
[15] Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 11. 10.3390/nu11102393.
[16] Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57, 1-24. 10.1007/s00394-017-1445-8.
[17] Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., and Porrini, M. (2011). Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem 59, 12815-12820. 10.1021/jf2028686.
[18] Yamakoshi, J., Tokutake, S., Kikuchi, M., Konishi, H., and Mitsuoka, T. (2001). Effect of Proanthocyanidin-Rich Extract from Grape Seeds on Human Fecal Flora and Fecal Odor. Microbial Ecology in Health & Disease 13. 10.3402/mehd.v13i1.7996.
[19] Queipo-Ortuño, M.I., Boto-Ordóñez, M., Murri, M., Gomez-Zumaquero, J.M., Clemente-Postigo, M., Estruch, R., Cardona Diaz, F., Andrés-Lacueva, C., and Tinahones, F.J. (2012). Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95, 1323-1334. 10.3945/ajcn.111.027847.
[20] LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D., and Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005.
[21] Silva Meneguelli, T., Duarte Villas Mishima, M., Hermsdorff, H.H.M., Martino, H.S.D., Bressan, J., and Tako, E. (2024). Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Critical Reviews in Food Science and Nutrition 64, 11206-11221. 10.1080/10408398.2023.2234025.
[22] Sanmiguel, C., Gupta, A., and Mayer, E.A. (2015). Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr Obes Rep 4, 250-261. 10.1007/s13679-015-0152-0.
[23] Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., et al. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541-546. 10.1038/nature12506.
[24] Rastelli, M., Knauf, C., and Cani, P.D. (2018). Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring) 26, 792-800. 10.1002/oby.22175.
[25] DiMattia, Z., Damani, J.J., Van Syoc, E., and Rogers, C.J. (2024). Effect of Probiotic Supplementation on Intestinal Permeability in Overweight and Obesity: A Systematic Review of Randomized Controlled Trials and Animal Studies. Advances in Nutrition 15, 100162. https://doi.org/10.1016/j.advnut.2023.100162.
[26] Ejtahed, H.-S., Angoorani, P., Soroush, A.-R., Atlasi, R., Hasani-Ranjbar, S., Mortazavian, A.M., and Larijani, B. (2019). Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. Journal of Functional Foods 52, 228-242. https://doi.org/10.1016/j.jff.2018.10.039.
[27] Torres, B., Sánchez, M.C., Virto, L., Llama-Palacios, A., Ciudad, M.J., and Collado, L. (2024). Use of probiotics in preventing and treating excess weight and obesity. A systematic review. Obes Sci Pract 10, e759. 10.1002/osp4.759.
[28] Saadati, S., Naseri, K., Asbaghi, O., Yousefi, M., Golalipour, E., and de Courten, B. (2024). Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 25, e13667. 10.1111/obr.13667.
[29] Mazloom, K., Siddiqi, I., and Covasa, M. (2019). Probiotics: How Effective Are They in the Fight against Obesity? Nutrients 11. 10.3390/nu11020258.
[30] Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110, 9066-9071. 10.1073/pnas.1219451110.
[31] Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., et al. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25, 1096-1103. 10.1038/s41591-019-0495-2.
[32] Depommier, C., Everard, A., Druart, C., Maiter, D., Thissen, J.P., Loumaye, A., Hermans, M.P., Delzenne, N.M., de Vos, W.M., and Cani, P.D. (2021). Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 13, 1994270. 10.1080/19490976.2021.1994270.
[33] Depommier, C., Vitale, R.M., Iannotti, F.A., Silvestri, C., Flamand, N., Druart, C., Everard, A., Pelicaen, R., Maiter, D., Thissen, J.P., et al. (2021). Beneficial Effects of Akkermansia muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells 10. 10.3390/cells10010185.
[34] Yue, C., Chu, C., Zhao, J., Zhang, H., Chen, W., and Zhai, Q. (2022). Dietary strategies to promote the abundance of intestinal Akkermansia muciniphila, a focus on the effect of plant extracts. Journal of Functional Foods 93, 105093. https://doi.org/10.1016/j.jff.2022.105093.
[35] Zhou, K. (2017). Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods 33, 194-201. 10.1016/j.jff.2017.03.045.
[36] Lange, K., Buerger, M., Stallmach, A., and Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases 34, 260-268. 10.1159/000443360.
[37] Vallianou, N., Dalamaga, M., Stratigou, T., Karampela, I., and Tsigalou, C. (2021). Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence. Current Obesity Reports 10, 244-262. 10.1007/s13679-021-00438-w.
[38] Del Fiol, F.S., Balcão, V.M., Barberato-Fillho, S., Lopes, L.C., and Bergamaschi, C.C. (2018). Obesity: A New Adverse Effect of Antibiotics? Frontiers in Pharmacology 9. 10.3389/fphar.2018.01408.
[39] Marotz, C.A., and Zarrinpar, A. (2016). Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale J Biol Med 89, 383-388.
[40] Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214. 10.1126/science.1241214.
[41] Di Luccia, B., Crescenzo, R., Mazzoli, A., Cigliano, L., Venditti, P., Walser, J.C., Widmer, A., Baccigalupi, L., Ricca, E., and Iossa, S. (2015). Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS One 10, e0134893. 10.1371/journal.pone.0134893.
[42] Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R.S., Bartelsman, J.F.W.M., Dallinga–Thie, G.M., Ackermans, M.T., Serlie, M.J., Oozeer, R., et al. (2012). Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology 143, 913-916.e917. 10.1053/j.gastro.2012.06.031.
[1] Loew, D., Habs, M., Klimm, H.-D., and Trunzler, G. (1999). Erkrankungen der oberen und unteren Atemwege (grippeartiger Infekt). In Phytopharmaka-Report: Rationale Therapie mit pflanzlichen Arzneimitteln, (Steinkopff), pp. 113-133. 10.1007/978-3-642-93704-0_12.
[2] Debnath, N., Kumar, A., and Yadav, A.K. (2022). Probiotics as a biotherapeutics for the management and prevention of respiratory tract diseases. Microbiol Immunol 66, 277-291. 10.1111/1348-0421.12980.
[3] Fuhrmann, C. (2010). The effects of weather and climate on the seasonality of influenza: what we know and what we need to know. Geography Compass 4, 718-730.
[4] Messerklinger, W. (1966). Uber die Drainage der menschlichen Nasenebenhohlen unter normale und pathologische Bedingungen, I: Mitteilung. Monatsschr Ohrenheilk 100, 56-68.
[5] Stuck, B., Beule, A., Jobst, D., Klimek, L., Laudien, M., Lell, M., Vogl, T., and Popert, U. (2018). Leitlinie „Rhinosinusitis “–Langfassung. Hno 66, 38-74.
[6] Sencio, V., Machado, M.G., and Trottein, F. (2021). The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology 14, 296-304. 10.1038/s41385-020-00361-8.
[7] Hufnagl, K., Pali-Schöll, I., Roth-Walter, F., and Jensen-Jarolim, E. (2020). Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol 42, 75-93. 10.1007/s00281-019-00775-y.
[8] Spacova, I., De Boeck, I., Bron, P.A., Delputte, P., and Lebeer, S. (2021). Topical Microbial Therapeutics against Respiratory Viral Infections. Trends Mol Med 27, 538-553. 10.1016/j.molmed.2021.03.009.
[9] Lehtoranta, L., Pitkäranta, A., and Korpela, R. (2014). Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis 33, 1289-1302. 10.1007/s10096-014-2086-y.
[10] Cruz, C.S., Ricci, M.F., and Vieira, A.T. (2021). Gut Microbiota Modulation as a Potential Target for the Treatment of Lung Infections. Front Pharmacol 12, 724033. 10.3389/fphar.2021.724033.
[11] Zhao, Y., Dong, B.R., and Hao, Q. (2022). Probiotics for preventing acute upper respiratory tract infections. Cochrane Database of Systematic Reviews. 10.1002/14651858.CD006895.pub4.
[12] Gleeson, M., Bishop, N.C., and Struszczak, L. (2016). Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur J Appl Physiol 116, 1555-1563. 10.1007/s00421-016-3415-x.
[13] Van Puyenbroeck, K., Hens, N., Coenen, S., Michiels, B., Beunckens, C., Molenberghs, G., Van Royen, P., and Verhoeven, V. (2012). Efficacy of daily intake of Lactobacillus casei Shirota on respiratory symptoms and influenza vaccination immune response: a randomized, double-blind, placebo-controlled trial in healthy elderly nursing home residents. Am J Clin Nutr 95, 1165-1171. 10.3945/ajcn.111.026831.
[14] Fujita, R., Iimuro, S., Shinozaki, T., Sakamaki, K., Uemura, Y., Takeuchi, A., Matsuyama, Y., and Ohashi, Y. (2013). Decreased duration of acute upper respiratory tract infections with daily intake of fermented milk: a multicenter, double-blinded, randomized comparative study in users of day care facilities for the elderly population. Am J Infect Control 41, 1231-1235. 10.1016/j.ajic.2013.04.005.
[15] Nagata, S., Asahara, T., Wang, C., Suyama, Y., Chonan, O., Takano, K., Daibou, M., Takahashi, T., Nomoto, K., and Yamashiro, Y. (2016). The Effectiveness of Lactobacillus Beverages in Controlling Infections among the Residents of an Aged Care Facility: A Randomized Placebo-Controlled Double-Blind Trial. Ann Nutr Metab 68, 51-59. 10.1159/000442305.
[16] Shida, K., Sato, T., Iizuka, R., Hoshi, R., Watanabe, O., Igarashi, T., Miyazaki, K., Nanno, M., and Ishikawa, F. (2017). Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur J Nutr 56, 45-53. 10.1007/s00394-015-1056-1.
[17] Poon, T., Juana, J., Noori, D., Jeansen, S., Pierucci-Lagha, A., and Musa-Veloso, K. (2020). Effects of a Fermented Dairy Drink Containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 (Lactobacillus casei CNCM I-1518) and the Standard Yogurt Cultures on the Incidence, Duration, and Severity of Common Infectious Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 12. 10.3390/nu12113443.
[18] Maldonado, J., Cañabate, F., Sempere, L., Vela, F., Sánchez, A.R., Narbona, E., López-Huertas, E., Geerlings, A., Valero, A.D., Olivares, M., and Lara-Villoslada, F. (2012). Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr 54, 55-61. 10.1097/MPG.0b013e3182333f18.
[19] Kekkonen, R.A., Vasankari, T.J., Vuorimaa, T., Haahtela, T., Julkunen, I., and Korpela, R. (2007). The effect of probiotics on respiratory infections and gastrointestinal symptoms during training in marathon runners. Int J Sport Nutr Exerc Metab 17, 352-363. 10.1123/ijsnem.17.4.352.
[20] Hatakka, K., Savilahti, E., Pönkä, A., Meurman, J.H., Poussa, T., Näse, L., Saxelin, M., and Korpela, R. (2001). Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. Bmj 322, 1327. 10.1136/bmj.322.7298.1327.
[21] Hojsak, I., Snovak, N., Abdović, S., Szajewska, H., Misak, Z., and Kolacek, S. (2010). Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr 29, 312-316. 10.1016/j.clnu.2009.09.008.
[22] Kumpu, M., Kekkonen, R.A., Kautiainen, H., Järvenpää, S., Kristo, A., Huovinen, P., Pitkäranta, A., Korpela, R., and Hatakka, K. (2012). Milk containing probiotic Lactobacillus rhamnosus GG and respiratory illness in children: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 66, 1020-1023. 10.1038/ejcn.2012.62.
[23] Habermann, W., Zimmermann, K., Skarabis, H., Kunze, R., and Rusch, V. (2001). [The effect of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapse in patients with]. Arzneimittelforschung 51, 931-937. 10.1055/s-0031-1300140.
[24] Habermann, W., Zimmermann, K., Skarabis, H., Kunze, R., and Rusch, V. (2002). Verminderung der Rezidivhäufigkeit bei Patienten mit chronisch rezidivierender hypertrophischer Sinusitis unter Behandlung mit einem bakteriellen Immunstimulans (Enterococcus faecalis-Bakterien humaner Herkunft). Arzneimittelforschung 52, 622-627.
[25] West, N.P., Horn, P.L., Pyne, D.B., Gebski, V.J., Lahtinen, S.J., Fricker, P.A., and Cripps, A.W. (2014). Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin Nutr 33, 581-587. 10.1016/j.clnu.2013.10.002.
[26] Leyer, G.J., Li, S., Mubasher, M.E., Reifer, C., and Ouwehand, A.C. (2009). Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124, e172-179. 10.1542/peds.2008-2666.
[27] Ciabattini, A., Nardini, C., Santoro, F., Garagnani, P., Franceschi, C., and Medaglini, D. (2018). Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol 40, 83-94. 10.1016/j.smim.2018.10.010.
[28] Redondo, N., Nova, E., Gheorghe, A., Díaz, L.E., Hernández, A., and Marcos, A. (2017). Evaluation of Lactobacillus coryniformis CECT5711 strain as a coadjuvant in a vaccination process: a randomised clinical trial in healthy adults. Nutrition & Metabolism 14, 2. 10.1186/s12986-016-0154-2.
[29] Fonollá, J., Gracián, C., Maldonado-Lobón, J.A., Romero, C., Bédmar, A., Carrillo, J.C., Martín-Castro, C., Cabrera, A.L., García-Curiel, J.M., Rodríguez, C., et al. (2019). Effects of Lactobacillus coryniformis K8 CECT5711 on the immune response to influenza vaccination and the assessment of common respiratory symptoms in elderly subjects: a randomized controlled trial. Eur J Nutr 58, 83-90. 10.1007/s00394-017-1573-1.
[30] Fernández-Ferreiro, A., Formigo-Couceiro, F.J., Veiga-Gutierrez, R., Maldonado-Lobón, J.A., Hermida-Cao, A.M., Rodriguez, C., Bañuelos, O., Olivares, M., and Blanco-Rojo, R. (2022). Effects of Loigolactobacillus coryniformis K8 CECT 5711 on the Immune Response of Elderly Subjects to COVID-19 Vaccination: A Randomized Controlled Trial. Nutrients 14. 10.3390/nu14010228.
[1] Hill, D.R., and Beeching, N.J. (2010). Travelers‘ diarrhea. Curr Opin Infect Dis 23, 481-487. 10.1097/QCO.0b013e32833dfca5.
[2] Steffen, R. (2005). Epidemiology of traveler’s diarrhea. Clin Infect Dis 41 Suppl 8, S536-540. 10.1086/432948.
[3] Steffen, R., Hill, D.R., and DuPont, H.L. (2015). Traveler’s diarrhea: a clinical review. Jama 313, 71-80.
[4] Riddle, M.S., Connor, B.A., Beeching, N.J., DuPont, H.L., Hamer, D.H., Kozarsky, P., Libman, M., Steffen, R., Taylor, D., Tribble, D.R., et al. (2017). Guidelines for the prevention and treatment of travelers‘ diarrhea: a graded expert panel report. J Travel Med 24, S57-s74. 10.1093/jtm/tax026.
[5] Hill, D.R. (2000). Occurrence and self-treatment of diarrhea in a large cohort of Americans traveling to developing countries. Am J Trop Med Hyg 62, 585-589. 10.4269/ajtmh.2000.62.585.
[6] Schlagenhauf, P., Chen, L.H., Wilson, M.E., Freedman, D.O., Tcheng, D., Schwartz, E., Pandey, P., Weber, R., Nadal, D., Berger, C., et al. (2010). Sex and gender differences in travel-associated disease. Clin Infect Dis 50, 826-832. 10.1086/650575.
[7] David, L.A., Materna, A.C., Friedman, J., Campos-Baptista, M.I., Blackburn, M.C., Perrotta, A., Erdman, S.E., and Alm, E.J. (2014). Host lifestyle affects human microbiota on daily timescales. Genome Biology 15, R89. 10.1186/gb-2014-15-7-r89.
[8] Boolchandani, M., Blake, K.S., Tilley, D.H., Cabada, M.M., Schwartz, D.J., Patel, S., Morales, M.L., Meza, R., Soto, G., Isidean, S.D., et al. (2022). Impact of international travel and diarrhea on gut microbiome and resistome dynamics. Nature Communications 13, 7485. 10.1038/s41467-022-34862-w.
[9] Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A., and Keshavarzian, A. (2016). Circadian Rhythm and the Gut Microbiome. Int Rev Neurobiol 131, 193-205. 10.1016/bs.irn.2016.07.002.
[10] Rasko, D.A. (2017). Changes in microbiome during and after travellers‘ diarrhea: what we know and what we do not. J Travel Med 24, S52-s56. 10.1093/jtm/tax017.
[11] Lääveri, T., Vilkman, K., Pakkanen, S.H., Kirveskari, J., and Kantele, A. (2018). A prospective study of travellers‘ diarrhoea: analysis of pathogen findings by destination in various (sub)tropical regions. Clinical Microbiology and Infection 24, 908.e909-908.e916. https://doi.org/10.1016/j.cmi.2017.10.034.
[12] Gupta, V.K., Paul, S., and Dutta, C. (2017). Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front Microbiol 8, 1162. 10.3389/fmicb.2017.01162.
[13] Gorbach, S.L., Kean, B.H., Evans, D.G., Evans, D.J., Jr., and Bessudo, D. (1975). Travelers‘ diarrhea and toxigenic Escherichia coli. N Engl J Med 292, 933-936. 10.1056/nejm197505012921801.
[14] Jiang, Z.D., Dupont, H.L., Brown, E.L., Nandy, R.K., Ramamurthy, T., Sinha, A., Ghosh, S., Guin, S., Gurleen, K., Rodrigues, S., et al. (2010). Microbial etiology of travelers‘ diarrhea in Mexico, Guatemala, and India: importance of enterotoxigenic Bacteroides fragilis and Arcobacter species. J Clin Microbiol 48, 1417-1419. 10.1128/jcm.01709-09.
[15] LaRocque, R., and Harris, J.B. (2020). Travelers’ diarrhea: Microbiology, epidemiology, and prevention. UpToDate.
[16] Lucas, F., Popoff, M., and Corthier, G. (1991). [Bacterial enterotoxins: structure, mode of action]. Ann Rech Vet 22, 147-162.
[17] Olson, S., Hall, A., Riddle, M.S., and Porter, C.K. (2019). Travelers’ diarrhea: update on the incidence, etiology and risk in military and similar populations – 1990-2005 versus 2005–2015, does a decade make a difference? Tropical Diseases, Travel Medicine and Vaccines 5, 1. 10.1186/s40794-018-0077-1.
[18] Diemert, D.J. (2006). Prevention and self-treatment of traveler’s diarrhea. Clin Microbiol Rev 19, 583-594. 10.1128/cmr.00052-05.
[19] Kozicki, M., Steffen, R., and Schär, M. (1985). ‚Boil it, cook it, peel it or forget it‘: does this rule prevent travellers‘ diarrhoea? Int J Epidemiol 14, 169-172. 10.1093/ije/14.1.169.
[20] López-Gigosos, R., Segura-Moreno, M., Díez-Díaz, R., Plaza, E., and Mariscal, A. (2014). Commercializing diarrhea vaccines for travelers. Hum Vaccin Immunother 10, 1557-1567. 10.4161/hv.27737.
[21] Jelinek, T., and Kollaritsch, H. (2008). Vaccination with Dukoral against travelers‘ diarrhea (ETEC) and cholera. Expert Rev Vaccines 7, 561-567. 10.1586/14760584.7.5.561.
[22] Hohmann, C. (2004). Reisediarrhö: Keine Antibiotika zur Prophylaxe. Pharmazeutische Zeitung 149, 22-23.
[23] Fernandes, H.V.J., Houle, S.K.D., Johal, A., and Riddle, M.S. (2019). Travelers‘ diarrhea: Clinical practice guidelines for pharmacists. Can Pharm J (Ott) 152, 241-250. 10.1177/1715163519853308.
[24] Hagel, S., Epple, H.J., Feurle, G.E., Kern, W.V., Lynen Jansen, P., Malfertheiner, P., Marth, T., Meyer, E., Mielke, M., Moos, V., et al. (2015). [S2k-guideline gastrointestinal infectious diseases and Whipple’s disease]. Z Gastroenterol 53, 418-459. 10.1055/s-0034-1399337.
[25] Koo, H.L., and DuPont, H.L. (2010). Rifaximin: a unique gastrointestinal-selective antibiotic for enteric diseases. Curr Opin Gastroenterol 26, 17-25. 10.1097/MOG.0b013e328333dc8d.
[26] Bae, J.M. (2018). Prophylactic efficacy of probiotics on travelers‘ diarrhea: an adaptive meta-analysis of randomized controlled trials. Epidemiol Health 40, e2018043. 10.4178/epih.e2018043.
[27] McFarland, L.V., and Goh, S. (2019). Are probiotics and prebiotics effective in the prevention of travellers‘ diarrhea: A systematic review and meta-analysis. Travel Med Infect Dis 27, 11-19. 10.1016/j.tmaid.2018.09.007.
[28] Collinson, S., Deans, A., Padua-Zamora, A., Gregorio, G.V., Li, C., Dans, L.F., and Allen, S.J. (2020). Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 12, Cd003048. 10.1002/14651858.CD003048.pub4.
[29] Dinleyici, E.C., Kara, A., Dalgic, N., Kurugol, Z., Arica, V., Metin, O., Temur, E., Turel, O., Guven, S., Yasa, O., et al. (2015). Saccharomyces boulardii CNCM I-745 reduces the duration of diarrhoea, length of emergency care and hospital stay in children with acute diarrhoea. Benef Microbes 6, 415-421. 10.3920/bm2014.0086.
[30] Basu, S., Paul, D.K., Ganguly, S., Chatterjee, M., and Chandra, P.K. (2009). Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children: a randomized controlled trial. J Clin Gastroenterol 43, 208-213. 10.1097/MCG.0b013e31815a5780.
[31] Dinleyici, E.C., and Vandenplas, Y. (2014). Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr 103, e300-305. 10.1111/apa.12617.
[32] Azagra-Boronat, I., Rodríguez-Lagunas, M.J., Castell, M., and Pérez-Cano, F.J. (2019). Chapter 14 – Prebiotics for Gastrointestinal Infections and Acute Diarrhea. In Dietary Interventions in Gastrointestinal Diseases, R.R. Watson, and V.R. Preedy, eds. (Academic Press), pp. 179-191. https://doi.org/10.1016/B978-0-12-814468-8.00014-4.