Schulungshandbuch: Die Literaturliste
Literaturverzeichnis Modul 3
[1] Stripling, J., and Rodriguez, M. (2018). Current Evidence in Delivery and Therapeutic Uses of Fecal Microbiota Transplantation in Human Diseases-Clostridium difficile Disease and Beyond. Am J Med Sci 356, 424-432. 10.1016/j.amjms.2018.08.010.
[2] Khare, C.P. (2019). Evidence-based Ayurveda: Defining a new scientific path (Routledge).
[3] de Groot, P.F., Frissen, M.N., de Clercq, N.C., and Nieuwdorp, M. (2017). Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 8, 253-267. 10.1080/19490976.2017.1293224.
[4] Milestones in human microbiota research. (2019). www.nature.com/collections/microbiota-milestone.
[5] Koopman, N., van Leeuwen, P., Brul, S., and Seppen, J. (2022). History of fecal transplantation; camel feces contains limited amounts of Bacillus subtilis spores and likely has no traditional role in the treatment of dysentery. PLoS One 17, e0272607. 10.1371/journal.pone.0272607.
[6] Salamt, N., Idrus, R.B.H., Kashim, M., and Mokhtar, M.H. (2021). Anticancer, antiplatelet, gastroprotective and hepatoprotective effects of camel urine: A scoping review. Saudi Pharm J 29, 740-750. 10.1016/j.jsps.2021.05.006.
[7] Lewin, R.A. (2001). More on Merde. Perspect Biol Med 44, 594-607. 10.1353/pbm.2001.0067.
[8] Bayed, S.J., Issa, A., Jubara, A.B.A., and Babiker, R.A. (2019). Antimicrobial Effects of Camel’s Urine in Bacteria Isolated from Clinical Specimens of Wounds Collected from Patients Admitted in Kassala Teaching Hospital, Sudan. International Journal of Current Microbiology and Applied Sciences 8, 2717-27287706. 10.20546/ijcmas.2019.812.318.
[9] DeSalle, R., and Perkins, S.L. (2017). Welcome to the Microbiome (Yale University Press).
[10] Friedmann, H.C. (2014). Escherich and Escherichia. EcoSal Plus 6. 10.1128/ecosalplus.ESP-0025-2013.
[11] Neyen, C. (2021). Foundational Article: Mechnikov I, 1909: Intestinal Bacteriotherapy. J Leukoc Biol 109, 519-533. 10.1002/jlb.5ri1020-638.
[12] Tissier, H. (1900). Recherches sur la flore intestinale des nourrissons:(état normal et pathologique) (G. Carré et C. Naud).
[13] Einhorn, E., Wood, F., and Züblin, E. (2009). Über den Einfluss der Milchsäure-Bazillen auf die Darmflora. Archiv für Verdauungskrankheiten 16, 300-346. 10.1159/000191801.
[14] Vessela Vladkova, S. (2021). Bulgarien will seinen Joghurt vor Nachahmern schützen. https://www.mdr.de/nachrichten/welt/osteuropa/land-leute/bulgarien-joghurt-salzlakenkaese-100.html.
[15] Orland, B. (2024). Elie Metchnikoff https://www.alimentarium.org/de/story/elie-metchnikoff.
[16] Scourboutakos, M.J., Franco-Arellano, B., Murphy, S.A., Norsen, S., Comelli, E.M., and L’Abbé, M.R. (2017). Mismatch between Probiotic Benefits in Trials versus Food Products. Nutrients 9. 10.3390/nu9040400.
[17] Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., and Ouwehand, A.C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 7. 10.3390/microorganisms7030083.
[18] Goldener Windbeutel 2009 verliehen: foodwatch-Aktion bei Danone. (2009). foodwatch e. v.
[19] Wassenaar, T.M. (2016). Insights from 100 Years of Research with Probiotic E. Coli. Eur J Microbiol Immunol (Bp) 6, 147-161. 10.1556/1886.2016.00029.
[20] Bär, F. (2009). Einfluss des Probiotikum Escherichia coli Nissle 1917 auf die in-vitro Motilität humaner Kolonmuskulatur. In U.z. Lübeck, ed.
[21] Hill, L., Sharma, R., Hart, L., Popov, J., Moshkovich, M., and Pai, N. (2021). The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. Journal of Laboratory Medicine 45, 275-291. doi:10.1515/labmed-2021-0131.
[22] Eiseman, B., Silen, W., Bascom, G.S., and Kauvar, A.J. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854-859.
[23] van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., Visser, C.E., Kuijper, E.J., Bartelsman, J.F., Tijssen, J.G., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368, 407-415. 10.1056/NEJMoa1205037.
[24] McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 5, 124. 10.3389/fmed.2018.00124.
[25] Sniffen, J.C., McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One 13, e0209205. 10.1371/journal.pone.0209205.
[26] Guarner, F., Sanders, M.E., and Szajewska, H. (2023). World Gastroenterology Organisation Global Guidelines: Probiotics and prebiotics. In W.G. Organisation, ed.
[1] Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635-1638. 10.1126/science.1110591.
[2] Storr, M. (2023). Sinn und Unsinn von Stuhlanalysen. In C. Mikrobiom, ed. CME-Fortbildung.
[3] Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220-230. 10.1038/nature11550.
[4] Shanahan, F., Ghosh, T.S., and O’Toole, P.W. (2021). The Healthy Microbiome-What Is the Definition of a Healthy Gut Microbiome? Gastroenterology 160, 483-494. 10.1053/j.gastro.2020.09.057.
[5] Sharon, I., Quijada, N.M., Pasolli, E., Fabbrini, M., Vitali, F., Agamennone, V., Dötsch, A., Selberherr, E., Grau, J.H., Meixner, M., et al. (2022). The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 14. 10.3390/nu14142872.
[6] Layer, P., Andresen, V., Allescher, H., Bischoff, S., Claßen, M., Elsenbruch, S., Freitag, M., Frieling, T., Gebhard, M., and Goebel-Stengel, M. (2021). Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM)–Juni 2021–AWMF-Registriernummer: 021/016. Zeitschrift für Gastroenterologie 59, 1323-1415.
[7] Hiergeist, A., Ruelle, J., Emler, S., and Gessner, A. (2023). Reliability of species detection in 16S microbiome analysis: Comparison of five widely used pipelines and recommendations for a more standardized approach. PLoS One 18, e0280870. 10.1371/journal.pone.0280870.
[1] Halaweish, H.F., Boatman, S., and Staley, C. (2022). Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front Cell Infect Microbiol 12, 826114. 10.3389/fcimb.2022.826114.
[2] Vendrik, K.E.W., Ooijevaar, R.E., de Jong, P.R.C., Laman, J.D., van Oosten, B.W., van Hilten, J.J., Ducarmon, Q.R., Keller, J.J., Kuijper, E.J., and Contarino, M.F. (2020). Fecal Microbiota Transplantation in Neurological Disorders. Front Cell Infect Microbiol 10, 98. 10.3389/fcimb.2020.00098.
[3] Khare, C.P. (2019). Evidence-based Ayurveda: Defining a new scientific path (Routledge).
[4] de Groot, P.F., Frissen, M.N., de Clercq, N.C., and Nieuwdorp, M. (2017). Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 8, 253-267. 10.1080/19490976.2017.1293224.
[5] Milestones in human microbiota research. (2019). www.nature.com/collections/microbiota-milestone.
[6] van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., Visser, C.E., Kuijper, E.J., Bartelsman, J.F., Tijssen, J.G., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368, 407-415. 10.1056/NEJMoa1205037.
[7] Eiseman, B., Silen, W., Bascom, G.S., and Kauvar, A.J. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854-859.
[8] Wang, J.W., Kuo, C.H., Kuo, F.C., Wang, Y.K., Hsu, W.H., Yu, F.J., Hu, H.M., Hsu, P.I., Wang, J.Y., and Wu, D.C. (2019). Fecal microbiota transplantation: Review and update. J Formos Med Assoc 118 Suppl 1, S23-s31. 10.1016/j.jfma.2018.08.011.
[9] Bou Zerdan, M., Niforatos, S., Nasr, S., Nasr, D., Ombada, M., John, S., Dutta, D., and Lim, S.H. (2022). Fecal Microbiota Transplant for Hematologic and Oncologic Diseases: Principle and Practice. Cancers (Basel) 14. 10.3390/cancers14030691.
[10] Stallmach, A., Steube, A., Grunert, P., Hartmann, M., Biehl, L.M., and Vehreschild, M.J.G.T. (2020). Fäkaler Mikrobiota-Transfer. Dtsch Arztebl International 117, 31-38.
[11] Hanssen, N.M.J., de Vos, W.M., and Nieuwdorp, M. (2021). Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab 33, 1098-1110. 10.1016/j.cmet.2021.05.005.
[12] Kao, D., Roach, B., Silva, M., Beck, P., Rioux, K., Kaplan, G.G., Chang, H.-J., Coward, S., Goodman, K.J., Xu, H., et al. (2017). Effect of Oral Capsule– vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 318, 1985-1993. 10.1001/jama.2017.17077.
[13] DuPont, H.L., DuPont, A.W., and Tillotson, G.S. (2024). Microbiota restoration therapies for recurrent Clostridioides difficile infection reach an important new milestone. Therap Adv Gastroenterol 17, 17562848241253089. 10.1177/17562848241253089.
[14] Feuerstadt, P., Louie, T.J., Lashner, B., Wang, E.E.L., Diao, L., Bryant, J.A., Sims, M., Kraft, C.S., Cohen, S.H., Berenson, C.S., et al. (2022). SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. N Engl J Med 386, 220-229. 10.1056/NEJMoa2106516.
[15] Cohen, S.H., Louie, T.J., Sims, M., Wang, E.E.L., Memisoglu, A., McGovern, B.H., and von Moltke, L. (2022). Extended Follow-up of Microbiome Therapeutic SER-109 Through 24 Weeks for Recurrent Clostridioides difficile Infection in a Randomized Clinical Trial. Jama 328, 2062-2064. 10.1001/jama.2022.16476.
[16] Sims, M.D., Khanna, S., Feuerstadt, P., Louie, T.J., Kelly, C.R., Huang, E.S., Hohmann, E.L., Wang, E.E.L., Oneto, C., Cohen, S.H., et al. (2023). Safety and Tolerability of SER-109 as an Investigational Microbiome Therapeutic in Adults With Recurrent Clostridioides difficile Infection: A Phase 3, Open-Label, Single-Arm Trial. JAMA Netw Open 6, e2255758. 10.1001/jamanetworkopen.2022.55758.
[17] Danne, C., Rolhion, N., and Sokol, H. (2021). Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 18, 503-513. 10.1038/s41575-021-00441-5.
[18] Kump, P., Krause, R., Steininger, C., Gröchenig, H., Moschen, A., Madl, C., Novacek, G., Allerberger, F., and Högenauer, C. (2014). Empfehlungen zur Anwendung der fäkalen Mikrobiotatransplantation „Stuhltransplantation “: Konsensus der Österreichischen Gesellschaft für Gastroenterologie und Hepatologie (ÖGGH) in Zusammenarbeit mit der Österreichischen Gesellschaft für Infektiologie und Tropenmedizin (OEGIT). Zeitschrift für Gastroenterologie 52, 1485-1492.
[19] McDonald, L.C., Gerding, D.N., Johnson, S., Bakken, J.S., Carroll, K.C., Coffin, S.E., Dubberke, E.R., Garey, K.W., Gould, C.V., Kelly, C., et al. (2018). Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66, e1-e48. 10.1093/cid/cix1085.
[20] Khoruts, A., and Sadowsky, M.J. (2016). Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13, 508-516. 10.1038/nrgastro.2016.98.
[21] El-Salhy, M., Hatlebakk, J.G., Gilja, O.H., Bråthen Kristoffersen, A., and Hausken, T. (2020). Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut 69, 859-867. 10.1136/gutjnl-2019-319630.
[22] Jensen, C., Antonsen, M.F., and Lied, G.A. (2022). Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms 10. 10.3390/microorganisms10101904.
[23] Chen, Q., Wu, C., Xu, J., Ye, C., Chen, X., Tian, H., Zong, N., Zhang, S., Li, L., Gao, Y., et al. (2024). Donor-recipient intermicrobial interactions impact transfer of subspecies and fecal microbiota transplantation outcome. Cell Host Microbe 32, 349-365.e344. 10.1016/j.chom.2024.01.013.
[24] Stallmach, A., Steube, A., Stallhofer, J., Grunert, P.C., Merkel, U., and Hartmann, M. (2022). [Fecal microbiota transplantation: indications, risks and opportunities]. Inn Med (Heidelb) 63, 1036-1042. 10.1007/s00108-022-01399-5.
[25] Cammarota, G., Ianiro, G., Kelly, C.R., Mullish, B.H., Allegretti, J.R., Kassam, Z., Putignani, L., Fischer, M., Keller, J.J., Costello, S.P., et al. (2019). International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut 68, 2111-2121. 10.1136/gutjnl-2019-319548.
[26] Chen, J., Zaman, A., Ramakrishna, B., and Olesen, S.W. (2021). Stool Banking for Fecal Microbiota Transplantation: Methods and Operations at a Large Stool Bank. Front Cell Infect Microbiol 11, 622949. 10.3389/fcimb.2021.622949.
[1] Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P.I., Godneva, A., Kalka, I.N., Bar, N., et al. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210-215. 10.1038/nature25973.
[2] Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M.A.Y., Bolte, L.A., Andreu-Sánchez, S., Chen, L., Collij, V., Hu, S., et al. (2022). Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732-739. 10.1038/s41586-022-04567-7.
[3] Hill, C. (2020). You have the microbiome you deserve. Gut Microbiome (Camb) 1, e3. 10.1017/gmb.2020.3.
[4] Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., et al. (2020). Short chain fatty acids in human gut and metabolic health. Benef Microbes 11, 411-455. 10.3920/bm2020.0057.
[5] David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563. 10.1038/nature12820.
[6] Bourdeau-Julien, I., Castonguay-Paradis, S., Rochefort, G., Perron, J., Lamarche, B., Flamand, N., Di Marzo, V., Veilleux, A., and Raymond, F. (2023). The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome 11, 26. 10.1186/s40168-023-01469-2.
[7] Wagner, I., and Groeneveld, M. (2022). Ernährung, Darmmikrobiota und Gesundheit – Diversity Matters, Teil 1. Ernährungs Umschau 69, M204–215. 10.4455/eu.2022.010.
[8] Deutsche Gesellschaft für Ernährung e. V. (2021). Ballaststoffe. https://www.dge.de/gesunde-ernaehrung/faq/ausgewaehlte-fragen-und-antworten-zu-ballaststoffen/#:~:text=Ballaststoffe,ver%C3%A4nderte%20N%C3%A4hrstoffabsorption%20und%20pr%C3%A4biotische%20Wirkung.
[9] Hofman, L. (2017). Update Fette: Bedeutung für Ernährung und Gesundheit. Bundeszentrum für Ernährung (BZfE) – Ernährung im Fokus, 68-77.
[10] Knies, J.M. (2019). Sekundäre Pflanzenstoffe, Teil 1. Ernährungs Umschau 66, M214-M221. 10.4455/eu.2019.015.
[11] Knies, J.M. (2019). Sekundäre Pflanzenstoffe, Teil 2. Ernährungs Umschau 66, M546-M554. 10.4455/eu.2019.041.
[12] Verbraucherzentrale Nordrhein-Westfalen e.V. (2024). Süßungsmittel: Was sind Süßstoffe und Zuckeraustauschstoffe? https://www.verbraucherzentrale.nrw/wissen/lebensmittel/kennzeichnung-und-inhaltsstoffe/suessungsmittel-was-sind-suessstoffe-und-zuckeraustauschstoffe-81624.
[13] Daniel, H. (2023). Gut physiology meets microbiome science. Gut Microbiome (Camb) 4, e1. 10.1017/gmb.2022.10.
[14] Sonnenburg, Erica D., and Sonnenburg, Justin L. (2014). Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism 20, 779-786. 10.1016/j.cmet.2014.07.003.
[15] Yadav, M., Verma, M.K., and Chauhan, N.S. (2018). A review of metabolic potential of human gut microbiome in human nutrition. Archives of Microbiology 200, 203-217. 10.1007/s00203-017-1459-x.
[16] Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19, 576-585. 10.1038/nm.3145.
[17] Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 11, 2393.
[18] Leech, B., McIntyre, E., Steel, A., and Sibbritt, D. (2019). Risk factors associated with intestinal permeability in an adult population: A systematic review. International Journal of Clinical Practice 73, e13385. https://doi.org/10.1111/ijcp.13385.
[19] Di Lorenzo, F., Duda, K.A., Lanzetta, R., Silipo, A., De Castro, C., and Molinaro, A. (2022). A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chemical Reviews 122, 15767-15821. 10.1021/acs.chemrev.0c01321.
[20] Schoeler, M., and Caesar, R. (2019). Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders 20, 461-472. 10.1007/s11154-019-09512-0.
[21] Kaliannan, K., Wang, B., Li, X.-Y., Kim, K.-J., and Kang, J.X. (2015). A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports 5, 11276. 10.1038/srep11276.
[22] Costantini, L., Molinari, R., Farinon, B., and Merendino, N. (2017). Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences 18, 2645.
[23] Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14, 491-502. 10.1038/nrgastro.2017.75.
[24] Górniak, I., Bartoszewski, R., and Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18, 241-272. 10.1007/s11101-018-9591-z.
[25] Del Bo’, C., Bernardi, S., Marino, M., Porrini, M., Tucci, M., Guglielmetti, S., Cherubini, A., Carrieri, B., Kirkup, B., Kroon, P., et al. (2019). Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 11, 1355.
[26] Del Bo, C., Bernardi, S., Cherubini, A., Porrini, M., Gargari, G., Hidalgo-Liberona, N., González-Domínguez, R., Zamora-Ros, R., Peron, G., Marino, M., et al. (2021). A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clinical Nutrition 40, 3006-3018. 10.1016/j.clnu.2020.12.014.
[27] Koch, W. (2019). Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 11, 1039.
[28] Wang, X., Qi, Y., and Zheng, H. (2022). Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 11, 1212.
[29] Suez, J., Cohen, Y., Valdés-Mas, R., Mor, U., Dori-Bachash, M., Federici, S., Zmora, N., Leshem, A., Heinemann, M., Linevsky, R., et al. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307-3328.e3319. 10.1016/j.cell.2022.07.016.
[30] Sylvetsky, A.C., Clement, R.A., Stearrett, N., Issa, N.T., Dore, F.J., Mazumder, R., King, C.H., Hubal, M.J., Walter, P.J., Cai, H., et al. (2024). Consumption of sucralose- and acesulfame-potassium-containing diet soda alters the relative abundance of microbial taxa at the species level: findings of two pilot studies. Appl Physiol Nutr Metab 49, 125-134. 10.1139/apnm-2022-0471.
[31] Esberg, A., Haworth, S., Hasslöf, P., Lif Holgerson, P., and Johansson, I. (2020). Oral Microbiota Profile Associates with Sugar Intake and Taste Preference Genes. Nutrients 12. 10.3390/nu12030681.
[32] Schiffman, S.S., and Nagle, H.T. (2019). Revisited: Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food and Chemical Toxicology 132, 110692. https://doi.org/10.1016/j.fct.2019.110692.
[33] del Pozo, S., Gómez-Martínez, S., Díaz, L.E., Nova, E., Urrialde, R., and Marcos, A. (2022). Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients 14, 1682.
[34] Naimi, S., Viennois, E., Gewirtz, A.T., and Chassaing, B. (2021). Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66. 10.1186/s40168-020-00996-6.
[35] Chassaing, B., Compher, C., Bonhomme, B., Liu, Q., Tian, Y., Walters, W., Nessel, L., Delaroque, C., Hao, F., Gershuni, V., et al. (2022). Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome. Gastroenterology 162, 743-756. 10.1053/j.gastro.2021.11.006.
[36] Rinninella, E., Cintoni, M., Raoul, P., Gasbarrini, A., and Mele, M.C. (2020). Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. International Journal of Environmental Research and Public Health 17, 8816.
[37] Ashwell, M., Gibson, S., Bellisle, F., Buttriss, J., Drewnowski, A., Fantino, M., Gallagher, A.M., de Graaf, K., Goscinny, S., Hardman, C.A., et al. (2020). Expert consensus on low-calorie sweeteners: facts, research gaps and suggested actions. Nutrition Research Reviews 33, 145-154. 10.1017/S0954422419000283.
[38] Derkach, A., Sampson, J., Joseph, J., Playdon, M.C., and Stolzenberg-Solomon, R.Z. (2017). Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. Am J Clin Nutr 106, 1131-1141. 10.3945/ajcn.116.150136.
[39] Wilck, N., Matus, M.G., Kearney, S.M., Olesen, S.W., Forslund, K., Bartolomaeus, H., Haase, S., Mähler, A., Balogh, A., Markó, L., et al. (2017). Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585-589. 10.1038/nature24628.
[40] Marco, M.L., Sanders, M.E., Gänzle, M., Arrieta, M.C., Cotter, P.D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., et al. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology 18, 196-208. 10.1038/s41575-020-00390-5.
[41] Seiler, R., Spielman, A.I., Zink, A., and Rühli, F. (2013). Oral pathologies of the Neolithic Iceman, c.3,300 BC. Eur J Oral Sci 121, 137-141. 10.1111/eos.12037.
[42] Maixner, F., Thomma, A., Cipollini, G., Widder, S., Rattei, T., and Zink, A. (2014). Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman. PLoS One 9, e99994. 10.1371/journal.pone.0099994.
[43] Adler, C.J., Dobney, K., Weyrich, L.S., Kaidonis, J., Walker, A.W., Haak, W., Bradshaw, C.J., Townsend, G., Sołtysiak, A., Alt, K.W., et al. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45, 450-455, 455e451. 10.1038/ng.2536.
[44] Corbin, K.D., Carnero, E.A., Dirks, B., Igudesman, D., Yi, F., Marcus, A., Davis, T.L., Pratley, R.E., Rittmann, B.E., Krajmalnik-Brown, R., and Smith, S.R. (2023). Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nat Commun 14, 3161. 10.1038/s41467-023-38778-x.
[45] Farsi, D.N., Gallegos, J.L., Koutsidis, G., Nelson, A., Finnigan, T.J.A., Cheung, W., Muñoz-Muñoz, J.L., and Commane, D.M. (2023). Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial. Eur J Nutr 62, 1479-1492. 10.1007/s00394-023-03088-x.
[46] Ji, Y., Sakata, Y., and Tso, P. (2011). Nutrient-induced inflammation in the intestine. Curr Opin Clin Nutr Metab Care 14, 315-321. 10.1097/MCO.0b013e3283476e74.
[47] Stolfi, C., Pacifico, T., Monteleone, G., and Laudisi, F. (2023). Impact of Western Diet and Ultra-Processed Food on the Intestinal Mucus Barrier. Biomedicines 11. 10.3390/biomedicines11072015.
[48] Napier, B.A., Andres-Terre, M., Massis, L.M., Hryckowian, A.J., Higginbottom, S.K., Cumnock, K., Casey, K.M., Haileselassie, B., Lugo, K.A., Schneider, D.S., et al. (2019). Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A 116, 3688-3694. 10.1073/pnas.1814273116.
[49] Clemente-Suárez, V.J., Beltrán-Velasco, A.I., Redondo-Flórez, L., Martín-Rodríguez, A., and Tornero-Aguilera, J.F. (2023). Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 15. 10.3390/nu15122749.
[50] Merra, G., Noce, A., Marrone, G., Cintoni, M., Tarsitano, M.G., Capacci, A., and De Lorenzo, A. (2021). Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 13, 7.
[51] Guasch-Ferré, M., and Willett, W.C. (2021). The Mediterranean diet and health: a comprehensive overview. Journal of Internal Medicine 290, 549-566. https://doi.org/10.1111/joim.13333.
[52] Cani, P.D., and Van Hul, M. (2020). Mediterranean diet, gut microbiota and health: when age and calories do not add up! Gut 69, 1167-1168. 10.1136/gutjnl-2020-320781.
[53] Barber, C., Mego, M., Sabater, C., Vallejo, F., Bendezu, R.A., Masihy, M., Guarner, F., Espín, J.C., Margolles, A., and Azpiroz, F. (2021). Differential Effects of Western and Mediterranean-Type Diets on Gut Microbiota: A Metagenomics and Metabolomics Approach. Nutrients 13. 10.3390/nu13082638.
[54] Lim, M.Y., Hong, S., Bang, S.J., Chung, W.H., Shin, J.H., Kim, J.H., and Nam, Y.D. (2021). Gut Microbiome Structure and Association with Host Factors in a Korean Population. mSystems 6, e0017921. 10.1128/mSystems.00179-21.
[55] Prochazkova, M., Budinska, E., Kuzma, M., Pelantova, H., Hradecky, J., Heczkova, M., Daskova, N., Bratova, M., Modos, I., Videnska, P., et al. (2022). Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Frontiers in Nutrition 8. 10.3389/fnut.2021.783302.
[56] Djekic, D., Shi, L., Brolin, H., Carlsson, F., Särnqvist, C., Savolainen, O., Cao, Y., Bäckhed, F., Tremaroli, V., Landberg, R., and Frøbert, O. (2020). Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: A Randomized, Crossover Study. J Am Heart Assoc 9, e016518. 10.1161/jaha.120.016518.
[57] Kahleova, H., Rembert, E., Alwarith, J., Yonas, W.N., Tura, A., Holubkov, R., Agnello, M., Chutkan, R., and Barnard, N.D. (2020). Effects of a Low-Fat Vegan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients 12. 10.3390/nu12102917.
[58] Reddel, S., Putignani, L., and Del Chierico, F. (2019). The Impact of Low-FODMAPs, Gluten-Free, and Ketogenic Diets on Gut Microbiota Modulation in Pathological Conditions. Nutrients 11, 373.
[59] Lenhart, A., Dong, T., Joshi, S., Jaffe, N., Choo, C., Liu, C., Jacobs, J.P., Lagishetty, V., Shih, W., Labus, J.S., et al. (2022). Effect of Exclusion Diets on Symptom Severity and the Gut Microbiota in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology 20, e465-e483. 10.1016/j.cgh.2021.05.027.
[60] Felber, J., Bläker, H., Fischbach, W., Koletzko, S., Laaß, M., Lachmann, N., Lorenz, P., Lynen, P., Reese, I., Scherf, K., et al. (2022). Aktualisierte S2k-Leitlinie Zöliakie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). Dezember 2021 – AWMF-Registernummer: 021-021 60, 790-856. 10.1055/a-1741-5946.
[61] Layer, P., Andresen, V., Allescher, H., Bischoff, S.C., Claßen, M., Elsenbruch, S., Freitag, M., Frieling, T., Gebhard, M., Goebel-Stengel, M., et al. (2021). Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. Z Gastroenterol 59, 1323-1415. 10.1055/a-1591-4794.
[62] Drossman, D.A., and Hasler, W.L. (2016). Rome IV—Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 150, 1257-1261. 10.1053/j.gastro.2016.03.035.
[63] Zhernakova, A., Kurilshikov, A., Bonder, M.J., Tigchelaar, E.F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A.V., Falony, G., Vieira-Silva, S., et al. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569. doi:10.1126/science.aad3369.
[64] Bolte, L.A., Vich Vila, A., Imhann, F., Collij, V., Gacesa, R., Peters, V., Wijmenga, C., Kurilshikov, A., Campmans-Kuijpers, M.J.E., Fu, J., et al. (2021). Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 70, 1287-1298. 10.1136/gutjnl-2020-322670.
[65] He, P., Yu, L., Tian, F., Zhang, H., Chen, W., and Zhai, Q. (2022). Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Adv Nutr 13, 1628-1651. 10.1093/advances/nmac029.
[66] Boehme, M., Guzzetta, K.E., Wasén, C., and Cox, L.M. (2023). The gut microbiota is an emerging target for improving brain health during ageing. Gut Microbiome 4, e2, e2. 10.1017/gmb.2022.11.
[67] Ghosh, T.S., Shanahan, F., and O’Toole, P.W. (2022). The gut microbiome as a modulator of healthy ageing. Nature Reviews Gastroenterology & Hepatology 19, 565-584. 10.1038/s41575-022-00605-x.
[68] Ghosh, T.S., Rampelli, S., Jeffery, I.B., Santoro, A., Neto, M., Capri, M., Giampieri, E., Jennings, A., Candela, M., Turroni, S., et al. (2020). Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218-1228. 10.1136/gutjnl-2019-319654.
[69] O’Brien, M.T., O’Sullivan, O., Claesson, M.J., and Cotter, P.D. (2022). The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Medicine 52, 119-128. 10.1007/s40279-022-01785-x.
[70] Clark, A., and Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr 13, 43. 10.1186/s12970-016-0155-6.
[71] Rijnaarts, I., Witteman, B.J.M., Zoetendal, E.G., Govers, C., de Wit, N.J.W., and de Roos, N.M. (2021). Subtypes and Severity of Irritable Bowel Syndrome Are Not Related to Patients‘ Self-Reported Dietary Triggers: Results From an Online Survey in Dutch Adults. Journal of the Academy of Nutrition and Dietetics 121, 1750-1762.e1758. 10.1016/j.jand.2021.01.007.
[72] Wagner, I., and Groeneveld, M. (2022). Ernährung, Darmmikrobiota und Gesundheit – Diversity Matters, Teil 2. Ernährungs Umschau 69, M327-M335. 10.4455/eu.2022.018.
[73] Schäfer, C. (2020). Wie ernähre ich mich bei Magen-Darm-Beschwerden?: Was nützt, was nicht – praktische Hilfen für den Alltag (Verbraucherzentrale Nordrhein-Westfalen e.V.,).
[1] Pasteur, L. (1864). Mémoire sur la fermentation acétique. pp. 113-158.
[2] Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., et al. (2017). Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44, 94-102. 10.1016/j.copbio.2016.11.010.
[3] Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E., Boulton, R.B., Singleton, V.L., Bisson, L.F., and Kunkee, R.E. (1999). Yeast and biochemistry of ethanol fermentation. Principles and practices of winemaking, 102-192.
[4] Lahue, C., Madden, A.A., Dunn, R.R., and Smukowski Heil, C. (2020). History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 11, 584718. 10.3389/fgene.2020.584718.
[5] Lau, S.W., Chong, A.Q., Chin, N.L., Talib, R.A., and Basha, R.K. (2021). Sourdough Microbiome Comparison and Benefits. Microorganisms 9. 10.3390/microorganisms9071355.
[6] Aykın, E., Budak, N.H., and Güzel-Seydim, Z.B. (2015). Bioactive components of mother vinegar. J Am Coll Nutr 34, 80-89. 10.1080/07315724.2014.896230.
[7] Elli, M., Callegari, M.L., Ferrari, S., Bessi, E., Cattivelli, D., Soldi, S., Morelli, L., Goupil Feuillerat, N., and Antoine, J.M. (2006). Survival of yogurt bacteria in the human gut. Appl Environ Microbiol 72, 5113-5117. 10.1128/aem.02950-05.
[8] Scourboutakos, M.J., Franco-Arellano, B., Murphy, S.A., Norsen, S., Comelli, E.M., and L’Abbé, M.R. (2017). Mismatch between Probiotic Benefits in Trials versus Food Products. Nutrients 9. 10.3390/nu9040400.
[9] Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., and Ouwehand, A.C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 7. 10.3390/microorganisms7030083.
[10] Vinderola, C.G., Costa, G.A., Regenhardt, S., and Reinheimer, J.A. (2002). Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal 12, 579-589. https://doi.org/10.1016/S0958-6946(02)00046-8.
[11] Lourens-Hattingh, A., and Viljoen, B.C. (2001). Yogurt as probiotic carrier food. International dairy journal 11, 1-17.
[12] Rubner-Institut, M. (2014). Ernährungsphysiologische Bewertung von Milch und Milchprodukten und ihren Inhaltsstoffen: Bericht für das Kompetenzzentrum für Ernährung, Bayern November 2014.
[13] McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 5, 124. 10.3389/fmed.2018.00124.
[14] Marteau, P. (2011). Evidence of probiotic strain specificity makes extrapolation of results impossible from a strain to another, even from the same species. Ann Gastroenterol Hepatol 2.
[1] Ruhee, R., and Suzuki, K. (2018). Dietary fiber and its effect on obesity. Advanced Medical Research 1, 1-13.
[2] Streppel, M.T., Arends, L.R., van’t Veer, P., Grobbee, D.E., and Geleijnse, J.M. (2005). Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Archives of internal medicine 165, 150-156.
[3] Gianfredi, V., Salvatori, T., Villarini, M., Moretti, M., Nucci, D., and Realdon, S. (2018). Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis. International Journal of Food Sciences and Nutrition 69, 904-915. 10.1080/09637486.2018.1446917.
[4] Kritchevsky, D. (1982). Dietary fiber and disease. Bulletin of the New York Academy of Medicine 58, 230.
[5] Turner, N.D., and Lupton, J.R. (2011). Dietary fiber. Adv Nutr 2, 151-152. 10.3945/an.110.000281.
[6] Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 11. 10.3390/nu11102393.
[7] Mudgil, D. (2017). The interaction between insoluble and soluble fiber. In Dietary fiber for the prevention of cardiovascular disease, (Elsevier), pp. 35-59.
[8] Thibault, J.F., and Ralet, M.C. (2000). Pectins, their origin, structure and functions. Advanced dietary fibre technology, 367-378.
[9] Redondo-Cuenca, A., Herrera-Vázquez, S.E., Condezo-Hoyos, L., Gómez-Ordóñez, E., and Rupérez, P. (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170, 113726. https://doi.org/10.1016/j.indcrop.2021.113726.
[10] Lazaridou, A., Biliaderis, C.G., and Izydorczyk, M.S. (2007). Cereal beta-glucans: structures, physical properties, and physiological functions. Functional food carbohydrates, 1-72.
[11] Sobieralski, K., Siwulski, M., Lisiecka, J., Jedryczka, M., Sas-Golak, I., and Fruzynska-Jozwiak, D. (2012). Fungi-derived beta-glucans as a component of functional food. Acta Scientiarum Polonorum. Hortorum Cultus 11.
[12] Tetens, I., Turrini, A., Tapanainen, H., Christensen, T., Lampe, J.W., Fagt, S., Håkansson, N., Lundquist, A., Hallund, J., and Valsta, L.M. (2013). Dietary intake and main sources of plant lignans in five European countries. Food & nutrition research 57, 19805.
[13] Brownlee, I., Allen, A., Pearson, J., Dettmar, P., Havler, M., Atherton, M., and Onsøyen, E. (2005). Alginate as a source of dietary fiber. Critical reviews in food science and nutrition 45, 497-510.
[14] Suresh, A., Shobna, Salaria, M., Morya, S., Khalid, W., Afzal, F.A., Khan, A.A., Safdar, S., Khalid, M.Z., and Mukonzo Kasongo, E.L. (2024). Dietary fiber: an unmatched food component for sustainable health. Food and Agricultural Immunology 35, 2384420. 10.1080/09540105.2024.2384420.
[15] Salvatore, S., Battigaglia, M.S., Murone, E., Dozio, E., Pensabene, L., and Agosti, M. (2023). Dietary Fibers in Healthy Children and in Pediatric Gastrointestinal Disorders: A Practical Guide. Nutrients 15. 10.3390/nu15092208.
[16] Raigond, P., Ezekiel, R., and Raigond, B. (2015). Resistant starch in food: a review. Journal of the Science of Food and Agriculture 95, 1968-1978.
[17] Gill, S.K., Rossi, M., Bajka, B., and Whelan, K. (2021). Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology & Hepatology 18, 101-116. 10.1038/s41575-020-00375-4.
[18] Ströhle, A., Wolters, M., and Hahn, A. (2018). Präventives Potenzial von Ballaststoffen − Ernährungsphysiologie und Epidemiologie. Aktuelle Ernährungsmedizin 43, 179-200. 10.1055/s-0044-101812.
[19] DGE, and ÖGE (2015). DA-CH-Referenzwerte für die Nährstoffzufuhr. DGE Bonn.
[20] Yu, K., Ke, M.-Y., Li, W.-H., Zhang, S.-Q., and Fang, X.-C. (2014). The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pacific Journal of Clinical Nutrition 23, 210-218.
[21] Soliman, G.A. (2019). Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 11. 10.3390/nu11051155.
[22] Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14, 491-502. 10.1038/nrgastro.2017.75.
[23] Rackerby, B., Kim, H.J., Dallas, D.C., and Park, S.H. (2020). Understanding the effects of dietary components on the gut microbiome and human health. Food Science and Biotechnology 29, 1463-1474. 10.1007/s10068-020-00811-w.
[24] Sonnenburg, E.D., and Sonnenburg, J.L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell metabolism 20, 779-786.
[25] Holmes, Z.C., Villa, M.M., Durand, H.K., Jiang, S., Dallow, E.P., Petrone, B.L., Silverman, J.D., Lin, P.-H., and David, L.A. (2022). Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114. 10.1186/s40168-022-01307-x.
[26] Duncan, S.H., Louis, P., Thomson, J.M., and Flint, H.J. (2009). The role of pH in determining the species composition of the human colonic microbiota. Environmental microbiology 11, 2112-2122.
[27] Reichardt, N., Vollmer, M., Holtrop, G., Farquharson, F.M., Wefers, D., Bunzel, M., Duncan, S.H., Drew, J.E., Williams, L.M., and Milligan, G. (2018). Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. The ISME journal 12, 610-622.
[28] Cummings, J.H., Rombeau, J.L., and Sakata, T. (2004). Physiological and clinical aspects of short-chain fatty acids (Cambridge University Press).
[29] Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., and Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in immunology 121, 91-119.
[30] Vinelli, V., Biscotti, P., Martini, D., Del Bo, C., Marino, M., Meroño, T., Nikoloudaki, O., Calabrese, F.M., Turroni, S., Taverniti, V., et al. (2022). Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 14. 10.3390/nu14132559.
[31] Chen, Y., Wang, X., Zhang, C., Liu, Z., Li, C., and Ren, Z. (2022). Gut Microbiota and Bone Diseases: A Growing Partnership. Front Microbiol 13, 877776. 10.3389/fmicb.2022.877776.
[32] Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., and Schmidt, T.M. (2019). Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio 10. 10.1128/mBio.02566-18.
[33] Holmes, Z.C., Villa, M.M., Durand, H.K., Jiang, S., Dallow, E.P., Petrone, B.L., Silverman, J.D., Lin, P.H., and David, L.A. (2022). Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114. 10.1186/s40168-022-01307-x.
[34] Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S., and Sonnenburg, J.L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212-215. 10.1038/nature16504.
[35] Daïen, C.I., Pinget, G.V., Tan, J.K., and Macia, L. (2017). Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Front Immunol 8, 548. 10.3389/fimmu.2017.00548.
[36] Rodríguez-Daza, M.C., Pulido-Mateos, E.C., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., and Roy, D. (2021). Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 8, 689456. 10.3389/fnut.2021.689456.
[1] Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11, 506-514. 10.1038/nrgastro.2014.66.
[2] Marco, M.L., Sanders, M.E., Gänzle, M., Arrieta, M.C., Cotter, P.D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., et al. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 18, 196-208. 10.1038/s41575-020-00390-5.
[3] Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M.M., Sanders, M.E., Shamir, R., Swann, J.R., Szajewska, H., and Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 18, 649-667. 10.1038/s41575-021-00440-6.
[4] Cho, W.I., and Chung, M.S. (2020). Bacillus spores: a review of their properties and inactivation processing technologies. Food Sci Biotechnol 29, 1447-1461. 10.1007/s10068-020-00809-4.
[5] Szóstak, N., Handschuh, L., Samelak-Czajka, A., Tomela, K., Schmidt, M., Pruss, Ł., Milanowska-Zabel, K., Kozlowski, P., and Philips, A. (2023). Host Factors Associated with Gut Mycobiome Structure. mSystems 8, e0098622. 10.1128/msystems.00986-22.
[6] Ansari, F., Alian Samakkhah, S., Bahadori, A., Jafari, S.M., Ziaee, M., Khodayari, M.T., and Pourjafar, H. (2023). Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 63, 457-485. 10.1080/10408398.2021.1949577.
[7] Pais, P., Almeida, V., Yılmaz, M., and Teixeira, M.C. (2020). Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J Fungi (Basel) 6. 10.3390/jof6020078.
[8] Alkalbani, N.S., Osaili, T.M., Al-Nabulsi, A.A., Olaimat, A.N., Liu, S.Q., Shah, N.P., Apostolopoulos, V., and Ayyash, M.M. (2022). Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 8. 10.3390/jof8040365.
[9] Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., and Gil, A. (2012). Probiotic mechanisms of action. Ann Nutr Metab 61, 160-174. 10.1159/000342079.
[10] Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., and Rotondo, J.C. (2023). Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 12. 10.3390/cells12010184.
[11] Plaza-Diaz, J., Ruiz-Ojeda, F.J., Gil-Campos, M., and Gil, A. (2019). Mechanisms of Action of Probiotics. Adv Nutr 10, S49-s66. 10.1093/advances/nmy063.
[12] LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D., and Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005.
[13] Ney, L.M., Wipplinger, M., Grossmann, M., Engert, N., Wegner, V.D., and Mosig, A.S. (2023). Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 13, 230014. 10.1098/rsob.230014.
[14] Chen, Y., and Xu, J. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 13, 2099. 10.3390/nu13062099.
[15] Culp, E.J., and Goodman, A.L. (2023). Cross-feeding in the gut microbiome: Ecology and mechanisms. Cell Host Microbe 31, 485-499. 10.1016/j.chom.2023.03.016.
[16] McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 5, 124. 10.3389/fmed.2018.00124.
[17] McFarland, L.V., Ship, N., Auclair, J., and Millette, M. (2018). Primary prevention of Clostridium difficile infections with a specific probiotic combining Lactobacillus acidophilus, L. casei, and L. rhamnosus strains: assessing the evidence. J Hosp Infect 99, 443-452. 10.1016/j.jhin.2018.04.017.
[18] Sanders, M.E., Merenstein, D.J., Ouwehand, A.C., Reid, G., Salminen, S., Cabana, M.D., Paraskevakos, G., and Leyer, G. (2016). Probiotic use in at-risk populations. J Am Pharm Assoc (2003) 56, 680-686. 10.1016/j.japh.2016.07.001.
[19] Merenstein, D.J., Tancredi, D.J., Karl, J.P., Krist, A.H., Lenoir-Wijnkoop, I., Reid, G., Roos, S., Szajewska, H., and Sanders, M.E. (2024). Is There Evidence to Support Probiotic Use for Healthy People? Adv Nutr 15, 100265. 10.1016/j.advnut.2024.100265.
[20] Ahire, J.J., Rohilla, A., Kumar, V., and Tiwari, A. (2023). Quality Management of Probiotics: Ensuring Safety and Maximizing Health Benefits. Curr Microbiol 81, 1. 10.1007/s00284-023-03526-3.
[21] Food, U., and Administration, D. (2018). Policy regarding quantitative labeling of dietary supplements containing live microbials: guidance for industry. Silver Spring, MD: US Food and Drug Administration.
[22] Ouwehand, A.C., DongLian, C., Weijian, X., Stewart, M., Ni, J., Stewart, T., and Miller, L.E. (2014). Probiotics reduce symptoms of antibiotic use in a hospital setting: a randomized dose response study. Vaccine 32, 458-463. 10.1016/j.vaccine.2013.11.053.
[23] Huang, R., Xing, H.Y., Liu, H.J., Chen, Z.F., and Tang, B.B. (2021). Efficacy of probiotics in the treatment of acute diarrhea in children: a systematic review and meta-analysis of clinical trials. Transl Pediatr 10, 3248-3260. 10.21037/tp-21-511.
[24] Ducrotté, P., Sawant, P., and Jayanthi, V. (2012). Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol 18, 4012-4018. 10.3748/wjg.v18.i30.4012.
[25] Krammer, H., Storr, M., Madisch, A., and Riffel, J. (2021). Reizdarmbehandlung mit Lactobacillus plantarum 299v: Längere Einnahme verstärkt Behandlungserfolg–Ergebnisse einer nichtinterventionellen Studie. Zeitschrift für Gastroenterologie 59, 125-134.
[26] Wang, I.J., and Wang, J.Y. (2015). Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clinical & Experimental Allergy 45, 779-787.
[27] National Institutes of Health (NIH): Office of Dietary Supplements (ODS) (2023). Probiotics: Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/.
[28] Tompkins, T.A., Mainville, I., and Arcand, Y. (2011). The impact of meals on a probiotic during transit through a model of the human upper gastrointestinal tract. Benef Microbes 2, 295-303. 10.3920/bm2011.0022.
[29] Sniffen, J.C., McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One 13, e0209205. 10.1371/journal.pone.0209205.
[30] Farup, P.G., Jacobsen, M., Ligaarden, S.C., and Rudi, K. (2012). Probiotics, symptoms, and gut microbiota: what are the relations? A randomized controlled trial in subjects with irritable bowel syndrome. Gastroenterol Res Pract 2012, 214102. 10.1155/2012/214102.
[31] Han, S., Lu, Y., Xie, J., Fei, Y., Zheng, G., Wang, Z., Liu, J., Lv, L., Ling, Z., Berglund, B., et al. (2021). Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Front Cell Infect Microbiol 11, 609722. 10.3389/fcimb.2021.609722.
[32] Forssten, S.D., Yeung, N., and Ouwehand, A.C. (2020). Fecal Recovery of Probiotics Administered as a Multi-Strain Formulation during Antibiotic Treatment. Biomedicines 8. 10.3390/biomedicines8040083.
[33] Ojima, M.N., Yoshida, K., Sakanaka, M., Jiang, L., Odamaki, T., and Katayama, T. (2022). Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Current Opinion in Biotechnology 73, 108-120. https://doi.org/10.1016/j.copbio.2021.06.023.
[34] Reid, G., Gaudier, E., Guarner, F., Huffnagle, G.B., Macklaim, J.M., Munoz, A.M., Martini, M., Ringel-Kulka, T., Sartor, B., Unal, R., et al. (2010). Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes 1, 200-204. 10.4161/gmic.1.3.12013.
[35] McFarland, L.V. (2021). Efficacy of Single-Strain Probiotics Versus Multi-Strain Mixtures: Systematic Review of Strain and Disease Specificity. Dig Dis Sci 66, 694-704. 10.1007/s10620-020-06244-z.
[36] Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., and Ouwehand, A.C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 7. 10.3390/microorganisms7030083.
[37] Leyer, G.J., Li, S., Mubasher, M.E., Reifer, C., and Ouwehand, A.C. (2009). Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124, e172-179. 10.1542/peds.2008-2666.
[38] Quigley, E.M.M., and Gajula, P. (2020). Recent advances in modulating the microbiome. F1000Res 9. 10.12688/f1000research.20204.1.
[39] Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M., and Sanders, M.E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology 17, 687-701. 10.1038/s41575-020-0344-2.
[40] Joossens, M., De Preter, V., Ballet, V., Verbeke, K., Rutgeerts, P., and Vermeire, S. (2012). Effect of oligofructose-enriched inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn’s disease: results from a double-blinded randomised controlled trial. Gut 61, 958. 10.1136/gutjnl-2011-300413.
[41] Niv, E., Halak, A., Tiommny, E., Yanai, H., Strul, H., Naftali, T., and Vaisman, N. (2016). Randomized clinical study: Partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome. Nutr Metab (Lond) 13, 10. 10.1186/s12986-016-0070-5.
[42] Roy, S., and Dhaneshwar, S. (2023). Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 29, 2078-2100. 10.3748/wjg.v29.i14.2078.
[43] Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S.J., Berenjian, A., and Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 8. 10.3390/foods8030092.
[44] Hazards, E.P.o.B., Koutsoumanis, K., Allende, A., Alvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., Davies, R., De Cesare, A., and Hilbert, F. (2021). Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 14: suitability of taxonomic units notified to EFSA until March 2021. EFSA Journal 19, e06689.
[45] Merenstein, D., Pot, B., Leyer, G., Ouwehand, A.C., Preidis, G.A., Elkins, C.A., Hill, C., Lewis, Z.T., Shane, A.L., Zmora, N., et al. (2023). Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 15, 2185034. 10.1080/19490976.2023.2185034.
[46] BfArM (2018). BfArM: Rote-Hand-Brief zu neuen Kontraindikationen von Saccharomyces boulardii (Saccharomyces cerevisiae HANSEN CBS 5926) bei schwerkranken oder immunsupprimierten Patienten. https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2018/rhb-saccharomyces_boulardii.html.
[47] Liu, X., Zhao, H., and Wong, A. (2024). Accounting for the health risk of probiotics. Heliyon 10, e27908. 10.1016/j.heliyon.2024.e27908.
[48] Perna, A., Venditti, N., Merolla, F., Fusco, S., Guerra, G., Zoroddu, S., De Luca, A., and Bagella, L. (2024). Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int J Mol Sci 25. 10.3390/ijms25179688.
[49] Jarde, A., Lewis-Mikhael, A.M., Moayyedi, P., Stearns, J.C., Collins, S.M., Beyene, J., and McDonald, S.D. (2018). Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 14. 10.1186/s12884-017-1629-5.
[50] Okesene-Gafa, K.A., Moore, A.E., Jordan, V., McCowan, L., and Crowther, C.A. (2020). Probiotic treatment for women with gestational diabetes to improve maternal and infant health and well-being. Cochrane Database Syst Rev 6, Cd012970. 10.1002/14651858.CD012970.pub2.
[51] Dugoua, J.J., Machado, M., Zhu, X., Chen, X., Koren, G., and Einarson, T.R. (2009). Probiotic safety in pregnancy: a systematic review and meta-analysis of randomized controlled trials of Lactobacillus, Bifidobacterium, and Saccharomyces spp. J Obstet Gynaecol Can 31, 542-552. 10.1016/s1701-2163(16)34218-9.
[52] Elias, J., Bozzo, P., and Einarson, A. (2011). Are probiotics safe for use during pregnancy and lactation? Can Fam Physician 57, 299-301.
[1] Latté, K.P. (2020). Vergessene Heilpflanzen. Zeitschrift für Phytotherapie 41, 208-217. 10.1055/a-1126-9255.
[2] Pohlenz, M. (2020). Hippokrates und die Begründung der wissenschaftlichen Medizin (Walter de Gruyter GmbH & Co KG).
[3] Dioscorides, P. (2005). De materia medica (Wechelus).
[4] Müller, I. (1982). Die pflanzlichen Heilmittel bei Hildegard von Bingen (Müller Salzburg).
[5] Hardy, K., Buckley, S., Collins, M.J., Estalrrich, A., Brothwell, D., Copeland, L., García-Tabernero, A., García-Vargas, S., de la Rasilla, M., Lalueza-Fox, C., et al. (2012). Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617-626. 10.1007/s00114-012-0942-0.
[6] Weiß, R.F. Erinnerung an Professor RF Weiß–Altmeister der modernen Phytotherapie.
[7] Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature medicine 17, 1217-1220.
[8] Wink, M. (2015). Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines (Basel) 2, 251-286. 10.3390/medicines2030251.
[9] Al-Khayri, J.M., Rashmi, R., Toppo, V., Chole, P.B., Banadka, A., Sudheer, W.N., Nagella, P., Shehata, W.F., Al-Mssallem, M.Q., Alessa, F.M., et al. (2023). Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 13. 10.3390/metabo13060716.
[10] Schmitz, R. (1985). Friedrich Wilhelm Sertürner and the discovery of morphine. Pharmacy in history 27, 61-74.
[11] Yue, S.-J., Wang, W.-X., Yu, J.-G., Chen, Y.-Y., Shi, X.-Q., Yan, D., Zhou, G.-S., Zhang, L., Wang, C.-Y., and Duan, J.-A. (2019). Gut microbiota modulation with traditional Chinese medicine: a system biology-driven approach. Pharmacological Research 148, 104453.
[12] Zhang, X., Yang, Y., Zhang, F., Yu, J., Sun, W., Wang, R., and Wu, C. (2021). Traditional Chinese medicines differentially modulate the gut microbiota based on their nature (Yao-Xing). Phytomedicine 85, 153496.
[13] Xia, W., Liu, B., Tang, S., Yasir, M., and Khan, I. (2022). The science behind TCM and Gut microbiota interaction-their combinatorial approach holds promising therapeutic applications. Front Cell Infect Microbiol 12, 875513. 10.3389/fcimb.2022.875513.
[14] Li, J., Feng, S., Liu, X., Jia, X., Qiao, F., Guo, J., and Deng, S. (2022). Effects of Traditional Chinese Medicine and its Active Ingredients on Drug-Resistant Bacteria. Front Pharmacol 13, 837907. 10.3389/fphar.2022.837907.
[15] Usha, R., Sashidharan, S., and Palaniswamy, M. (2010). Antimicrobial Activity of a Rarely Known Species, Morinda citrifolia L. Ethnobotanical Leaflets 2010, 7.
[16] Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M.R.U., Zhao, H., and Huang, L. (2020). Antibacterial mechanism of curcumin: A review. Chemistry & Biodiversity 17, e2000171.
[17] Pluta, R., Januszewski, S., and Ułamek-Kozioł, M. (2020). Mutual two-way interactions of curcumin and gut microbiota. International journal of molecular sciences 21, 1055.
[18] Chaudhary, A., Sharma, V., and Saharan, B.S. (2019). Probiotic Potential of Noni and Mulberry Juice Fermented with Lactic Acid Bacteria. Asian Journal of Dairy & Food Research 38.
[19] Tsirulnichenko, L., and Kretova, J. (2020). Prebiotic properties of licorice root extracts.
[20] Fukai, T., Marumo, A., Kaitou, K., Kanda, T., Terada, S., and Nomura, T. (2002). Anti-Helicobacter pylori flavonoids from licorice extract. Life sciences 71, 1449-1463.
[21] Zhang, Y., Liu, X., Wang, Y., Jiang, P., and Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59, 282-289.
[22] Yao, Y., Cai, X., Fei, W., Ye, Y., Zhao, M., and Zheng, C. (2022). The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical reviews in food science and nutrition 62, 1-12.
[23] Wang, X.-H., Xu, D.-Q., Chen, Y.-Y., Yue, S.-J., Fu, R.-J., Huang, L., and Tang, Y.-P. (2022). Traditional Chinese Medicine: A promising strategy to regulate inflammation, intestinal disorders and impaired immune function due to sepsis. Frontiers in Pharmacology 13, 952938.
[24] Wang, L.-L., Guo, H.-H., Huang, S., Feng, C.-L., Han, Y.-X., and Jiang, J.-D. (2017). Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. Journal of Chromatography B 1057, 70-80.
[25] Qi, Y., Zhang, Q., and Zhu, H. (2019). Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chinese Medicine 14, 1-22.
[26] Yang, S., Li, X., Yang, F., Zhao, R., Pan, X., Liang, J., Tian, L., Li, X., Liu, L., and Xing, Y. (2019). Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Frontiers in Pharmacology 10, 1360.
[27] Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., Zhang, X., Du, Y., Zhang, J., and Wang, L. (2021). Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. npj Biofilms and Microbiomes 7, 36.
[28] Qin, X., Fang, Z., Zhang, J., Zhao, W., Zheng, N., and Wang, X. (2024). Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Frontiers in Microbiology 15. 10.3389/fmicb.2024.1362479.
[29] Ma, S.-R., Tong, Q., Lin, Y., Pan, L.-B., Fu, J., Peng, R., Zhang, X.-F., Zhao, Z.-X., Li, Y., Yu, J.-B., et al. (2022). Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduction and Targeted Therapy 7, 207. 10.1038/s41392-022-01027-6.
[30] Everard, A., and Cani, P.D. (2013). Diabetes, obesity and gut microbiota. Best practice & research Clinical gastroenterology 27, 73-83.
[31] Lv, W.-j., Liu, C., Li, Y.-f., Chen, W.-q., Li, Z.-q., Li, Y., Xiong, Y., Chao, L.-m., Xu, X.-l., and Guo, S.-n. (2019). Systems pharmacology and microbiome dissection of Shen Ling Bai Zhu San reveal multiscale treatment strategy for IBD. Oxidative medicine and cellular longevity 2019.
[32] Rasouli, H., Farzaei, M.H., and Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties 20, 1700-1741.
[33] Plamada, D., and Vodnar, D.C. (2021). Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 14, 137.
[34] Ticinesi, A., Guerra, A., Nouvenne, A., Meschi, T., and Maggi, S. (2023). Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 15. 10.3390/nu15051138.
[35] Guerra, A., Folesani, G., Mena, P., Ticinesi, A., Allegri, F., Nouvenne, A., Pinelli, S., Del Rio, D., Borghi, L., and Meschi, T. (2014). Hippuric acid in 24 h urine collections as a biomarker of fruits and vegetables intake in kidney stone formers. Int J Food Sci Nutr 65, 1033-1038. 10.3109/09637486.2014.950210.
[36] Mulder, T.P., Rietveld, A.G., and van Amelsvoort, J.M. (2005). Consumption of both black tea and green tea results in an increase in the excretion of hippuric acid into urine<sup>2</sup><sup>3</sup>. The American Journal of Clinical Nutrition 81, 256S-260S. 10.1093/ajcn/81.1.256S.
[37] Ai, X., Yu, P., Peng, L., Luo, L., Liu, J., Li, S., Lai, X., Luan, F., and Meng, X. (2021). Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 12, 762654. 10.3389/fphar.2021.762654.