Literaturliste Schulungshandbuch Mikrobiom Berater:in
Literaturverzeichnis Modul 1
[1] Dodd, M.S., et al., Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 2017. 543(7643): p. 60-64.
[2] Albani, A.E., et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature, 2010. 466(7302): p. 100-104.
[3] Locey, K.J. and J.T. Lennon, Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A, 2016. 113(21): p. 5970-5.
[4] Vellai, T. and G. Vida, The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1999. 266(1428): p. 1571-1577.
[5] Rosenberg, E., et al., Origin of Prokaryotes and Eukaryotes. The Hologenome Concept: Human, Animal and Plant Microbiota, 2013: p. 9-22.
[6] Woese, C.R., L.J. Magrum, and G.E. Fox, Archaebacteria. Journal of Molecular Evolution, 1978. 11: p. 245-252.
[7] Suerbaum, S., et al., Medizinische Mikrobiologie und Infektiologie. 2016: Springer-Verlag.
[8] Salton, M., Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochimica et biophysica acta, 1953. 10: p. 512-523.
[9] Groß, U., Kurzlehrbuch Medizinische Mikrobiologie und Infektiologie. 2013: Georg Thieme Verlag.
[10] Moran, A.P., M.M. Prendergast, and B.J. Appelmelk, Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunology & Medical Microbiology, 1996. 16(2): p. 105-115.
[11] Jann, K. and B. Jann, Bacterial capsules. Vol. 150. 2012: Springer Science & Business Media.
[12] Strużycka, I., The oral microbiome in dental caries. Polish journal of microbiology, 2014. 63(2): p. 127.
[13] Steven, B., et al., Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. International Journal of Systematic and Evolutionary Microbiology, 2008. 58(6): p. 1497-1501.
[14] Vreeland, R.H., W.D. Rosenzweig, and D.W. Powers, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 2000. 407(6806): p. 897-900.
[15] Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol. 2003;1(2):117-126.
[16] Liu H, Xu X, Liang J, Wang J, Li Y. The relationship between Clostridium butyricum and colorectal cancer. J Cancer Res Ther. 2022;18(7):1855-1859.
[17] Griffiths, M.W. and H. Schraft, Bacillus cereus food poisoning, in Foodborne diseases. 2017, Elsevier. p. 395-405.
[18] Monaghan, T., T. Boswell, and Y.R. Mahida, Recent advances in Clostridium difficile-associated disease. Gut, 2008. 57(6): p. 850-60.
[19] Dworkin, M., et al., The prokaryotes: a handbook on the biology of bacteria. Vol. 1. 2006: Springer.
[20] Conrad JC, Gibiansky ML, Jin F, et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J. 2011;100(7):1608-1616.
[21] Bente, K., et al., High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife, 2020. 9: p. e47551.
[22] Wilson, A.M., et al., Locomotion dynamics of hunting in wild cheetahs. Nature, 2013. 498(7453): p. 185-189.
[23] Lux, R. and W. Shi, Chemotaxis-guided movements in bacteria. Critical Reviews in Oral Biology & Medicine, 2004. 15(4): p. 207-220.
[24] Partridge, J.D. and R.M. Harshey, Swarming: flexible roaming plans. Journal of bacteriology, 2013. 195(5): p. 909-918.
[25] Ottow, J., Ecology, physiology, and genetics of fimbriae and pili. Annual review of microbiology, 1975. 29(1): p. 79-108.
[26] Danne C, Dramsi S. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol. 2012;163(9-10):645-658.
[27] Lwoff, A., et al. Nomenclature of nutritional types of microorganisms. in Cold Spring Harbor Symposia on Quantitative Biology. 1946. The Biological Laboratory Cold Spring Harbor, NY.
[28] Amils, R., Chemoautotroph, in Encyclopedia of Astrobiology, M. Gargaud, et al., Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 288-289.
[29] Fu, H., J. Yuan, and H. Gao, Microbial oxidative stress response: novel insights from environmental facultative anaerobic bacteria. Archives of biochemistry and biophysics, 2015. 584: p. 28-35.
[30] Vedyaykin, A., et al., Mechanisms of bacterial cell division. Microbiology, 2019. 88: p. 245-260.
[31] Escherichia coli. Spektrum.de. https://www.spektrum.de/lexikon/biologie/escherichia-coli/22571 (Abruf 22.04.2024)
[32] Tuberkulose. RKI. https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Tuberkulose.html (Abruf am 22.04.2024)
[33] Schertzer, J.W. and M. Whiteley, Microbial communication superhighways. Cell, 2011. 144(4): p. 469-470.
[34] Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. Iran J Pharm Res. 2021;20(2):486-514.
[35] Zhou, L., et al., Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in microbiology, 2020. 11: p. 589640.
[36] Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol. 2022;2022:4623713.
[37] McFarland LV, Evans CT, Goldstein EJC. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2018;5:124.
[38] Hudault, S., J. Guignot, and A.L. Servin, Escherichia coli strains colonising the gastrointestinal tract protect germfree mice againstSalmonella typhimuriuminfection. Gut, 2001. 49(1): p. 47-55.
[39] Lorenz, B., et al., Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 2020. 412(30): p. 8241-8247.
[1] Appanna, V.D. (2018). The Human Microbiome: The Origin. In: Human Microbes – The Power Within. Springer, Singapore.
[2] Whipps, J.M., K. Lewis, and R. Cooke, Mycoparasitism and plant disease control. 1988, Manchester University Press Manchester. p. 161-187.
[3] The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe, 2014. 16(3): p. 276-89.
[4] Berg, G., et al., Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020. 8(1): p. 103.
[5] Young, V.B., The role of the microbiome in human health and disease: an introduction for clinicians. Bmj, 2017. 356: p. j831.
[6] Dürfeld, K. Mikroorganismen besitzen Fähigkeiten, die kein anderer Organismus erreicht. 2020 [cited 2023 29.08.2023]; Available from: https://www.helmholtz.de/newsroom/artikel/mikroorganismen-besitzen-faehigkeiten-die-kein-anderer-organismus-erreicht/.
[7] Lei B, Xu Y, Lei Y, et al. CRAMdb: a comprehensive database for composition and roles of microbiome in animals. Nucleic Acids Res. 2023;51(D1):D700-D707.
[8] Witherden E A, Moyes D L. Chapter 22 – Mycobiome and Gut Inflammation: Implications in Gut Disease. Immunity and Inflammation in Health and Disease. Immunity and Inflammation in Health and Disease, Academic Press. 2018; p271-280. ISBN 9780128054178.
[9] Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8(6):e66019.
[10] Pérez JC. Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol. 2021;311(3):151490.
[11] Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol. 2021;12:636131.
[12] Sachdeva G, Das A. Communication between immune system and mycobiota impacts health and disease. Proceedings of the Indian National Science Academy. Part A, Physical Sciences. 2022;88(3):250-262.
[13] Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev. 2018;42(5):627-638.
[14] Balloux F, van Dorp L. Q&A: What are pathogens, and what have they done to and for us?. BMC Biol. 2017;15(1):91.
[15] Koonin EV, Starokadomskyy P. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud Hist Philos Biol Biomed Sci. 2016;59:125-134.
[16] Frank JA, Singh M, Cullen HB, et al. Evolution and antiviral activity of a human protein of retroviral origin. Science. 2022;378(6618):422-428.
[17] Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol. 2015;6:918.
[18] Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The „Known Unknown“ of the Microbiome. Cell Host Microbe. 2019;25(2):195-209.
[19] Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract. 2022;2022:4913146.
[20] Gostimskaya I. CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry (Mosc). 2022;87(8):777-788.
[21] Albani, A.E., et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature, 2010. 466(7302): p. 100-104.
[22] Deng YJ, Wang SY. Synergistic growth in bacteria depends on substrate complexity. J Microbiol. 2016;54(1):23-30.
[23] Haque SZ, Haque M. The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms – an appraisal. Clin Exp Gastroenterol. 2017;10:91-103.
[24] Martin, K., Mutualismus, in Ökologie der Biozönosen. 2002, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 127-148.
[25] Curtis MM, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol. 2011;4(2):133-138.
[26] Thomas, F. and F. Thomas, Ökologische Interaktionen. Grundzüge der Pflanzenökologie, 2018: p. 111-132.
[27] Dodd CS, Grueber CE. Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation. 2021; 1(4):311-326.
[28] Escalas A, Hale L, Voordeckers JW, et al. Microbial functional diversity: From concepts to applications. Ecol Evol. 2019;9(20):12000-12016.
[29] Thomas, A.M. and N. Segata, Multiple levels of the unknown in microbiome research. BMC Biology, 2019. 17(1): p. 48.
[30] Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-2858.
[1] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931-945.
[2] Proctor, L.M., et al., The Integrative Human Microbiome Project. Nature, 2019. 569(7758): p. 641-648.
[3] Kwa WT, Sundarajoo S, Toh KY, Lee J. Application of emerging technologies for gut microbiome research. Singapore Med J. 2023;64(1):45-52.
[4] Kim Y, Koh I, Young Lim M, Chung WH, Rho M. Pan-genome analysis of Bacillus for microbiome profiling. Sci Rep. 2017;7(1):10984.
[5] Sender, R., S. Fuchs, and R. Milo, Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol, 2016. 14(8): p. e1002533.
[6] Appanna, V.D., Human microbes-the power within: Health, healing and beyond. 2018: Springer.
[7] Turnbaugh, P.J., et al., The Human Microbiome Project. Nature, 2007. 449(7164): p. 804-810.
[8] Rinninella, E., et al., What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019. 7(1).
[9] Lozupone, C.A., et al., Diversity, stability and resilience of the human gut microbiota. Nature, 2012. 489(7415): p. 220-30.
[10] Sharon I, Quijada NM, Pasolli E, et al. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients. 2022;14(14):2872.
[11] Arumugam, M., et al., Enterotypes of the human gut microbiome. Nature, 2011. 473(7346): p. 174-80.
[12] Suerbaum S, Burchard G-D, Kaufmann SHE, Schulz TF (Hrsg.). Medizinische Mikrobiologie und Infektiologie. Springer-Verlag GmbH Deutschland, 2020
[13] Haller D, Hörmannsberger G. Darmgesundheit und Mikrobiota. Springer Fachmedien Wiesbaden 2015. ISBN 978-3-658-07647-4
[14] Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells. 2024;13(6):477.
[15] Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91.
[16] Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332-1345.
[17] LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160-168.
[18] Rowland IR, Grasso P. Degradation of N-nitrosamines by intestinal bacteria. Appl Microbiol. 1975;29(1):7-12.
[19] Pandolfo E, Barra Caracciolo A, Rolando L. Recent Advances in Bacterial Degradation of Hydrocarbons. Water. 2023; 15(2):375.
[20] Boekhorst J, Venlet N, Procházková N, et al. Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes. Microbiome. 2022;10(1):223.
[21] Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44.
[22] Baghai, T.C. and R. Rupprecht, Dickdarmmikrobiom, Stressregulation, Inflammation und Psyche. DNP-Der Neurologe und Psychiater, 2015. 16: p. 30-34.
[23] Gilbert, J.A., et al., Current understanding of the human microbiome. Nat Med, 2018. 24(4): p. 392-400
[24] Arrieta, M.C., et al., The intestinal microbiome in early life: health and disease. Front Immunol, 2014. 5: p. 427.
[25] Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70 Suppl 1(Suppl 1):S38-S44.
[26] Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr. 2017;147(7):1468S-1475S.
[27] Dominguez-Bello, M.G., et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A, 2010. 107(26): p. 11971-5.
[28] Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. Shaping the oral microbiota through intimate kissing. Microbiome. 2014;2:41.
[29] Cho, I. and M.J. Blaser, The human microbiome: at the interface of health and disease. Nat Rev Genet, 2012. 13(4): p. 260-70.
[30] Araos R, D’Agata EMC. The human microbiota and infection prevention. Infect Control Hosp Epidemiol. 2019;40(5):585-589.
[31] Quigley EMM, Gajula P. Recent advances in modulating the microbiome. F1000Res. 2020;9:F1000 Faculty Rev-46.
[32] Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.
[1] Li, H., et al., The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol, 2020. 10: p. 609488.
[2] Mendling, W., Vaginal Microbiota. Adv Exp Med Biol, 2016. 902: p. 83-93.
[3] Ravel, J., et al., Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1(Suppl 1): p. 4680-7.
[4] Ma, Z.S. and L. Li, Quantifying the human vaginal community state types (CSTs) with the species specificity index. PeerJ, 2017. 5: p. e3366.
[5] Kalia, N., J. Singh, and M. Kaur, Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Annals of Clinical Microbiology and Antimicrobials, 2020. 19(1): p. 5.
[6] Pascual, L.M., et al., Lactobacillus species isolated from the vagina: identification, hydrogen peroxide production and nonoxynol-9 resistance. Contraception, 2006. 73(1): p. 78-81.
[7] Satpute, S.K., et al., Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. J Basic Microbiol, 2016. 56(11): p. 1140-1158.
[8] Gupta, S., V. Kakkar, and I. Bhushan, Crosstalk between Vaginal Microbiome and Female Health: A review. Microbial Pathogenesis, 2019. 136: p. 103696.
[9] Kaur H, Merchant M, Haque MM, Mande SS. Crosstalk Between Female Gonadal Hormones and Vaginal Microbiota Across Various Phases of Women’s Gynecological Lifecycle. Front Microbiol. 2020;11:551.
[10] Aagaard, K., et al., A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One, 2012. 7(6): p. e36466.
[11] Petricevic, L., et al., Characterisation of the oral, vaginal and rectal Lactobacillus flora in healthy pregnant and postmenopausal women. Eur J Obstet Gynecol Reprod Biol, 2012. 160(1): p. 93-9.
[12] Goerke, K., J. Steller, and A. Valet, Klinikleitfaden Gynäkologie Geburtshilfe. 2018: Elsevier Health Sciences.
[13] Greenbaum, S., et al., Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol, 2019. 220(4): p. 324-335.
[14] Shipitsyna, E., et al., Bacterial vaginosis-associated vaginal microbiota is an age-independent risk factor for Chlamydia trachomatis, Mycoplasma genitalium and Trichomonas vaginalis infections in low-risk women, St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis, 2020. 39(7): p. 1221-1230.
[15] Money D. The laboratory diagnosis of bacterial vaginosis. Can J Infect Dis Med Microbiol. 2005;16(2):77-79.
[1] Goedicke-Fritz, S., C. Härtel, R. Bals, and M. Zemlin, Microbiome of the lungs. Monatsschrift fur Kinderheilkunde, 2019. 167(5): p. 404-410.
[2] Man, W.H., W.A. de Steenhuijsen Piters, and D. Bogaert, The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol, 2017. 15(5): p. 259-270.
[3] Kumpitsch, C., K. Koskinen, V. Schöpf, and C. Moissl-Eichinger, The microbiome of the upper respiratory tract in health and disease. BMC Biol, 2019. 17(1): p. 87.
[4] Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233-2247.
[5] Xu L, Jiang Y. Mathematical Modeling of Mucociliary Clearance: A Mini-Review. Cells. 2019;8(7):736.
[6] Weinberger, Steven (2019). Principles of Pulmonary Medicine. Elsevier. pp. 286–287. ISBN 9780323523714.
[7] Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol. 2023;14:1119564.
[8] Lai DM, Shu Q, Fan J. The origin and role of innate lymphoid cells in the lung. Mil Med Res. 2016;3:25.
[9] Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Annu Rev Physiol. 2016;78:481-504.
[10] Sommariva M, Le Noci V, Bianchi F, et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci. 2020;77(14):2739-2749.
[11] Huffnagle, G.B., R.P. Dickson, and N.W. Lukacs, The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol, 2017. 10(2): p. 299-306.
[12] Wypych, T.P., L.C. Wickramasinghe, and B.J. Marsland, The influence of the microbiome on respiratory health. Nat Immunol, 2019. 20(10): p. 1279-1290.
[13] Dima, E., et al., The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med, 2019. 157: p. 1-6.
[14] Mathieu, E., et al., Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Front Physiol, 2018. 9: p. 1168.
[15] Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Annu Rev Physiol. 2016;78:481-504.
[16] Mathieu, E., et al., Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Front Physiol, 2018. 9: p. 1168.
[17] Budden, K.F., et al., Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med, 2019. 7(10): p. 907-920.
[1] Hwa, C., E.A. Bauer, and D.E. Cohen, Skin biology. Dermatologic therapy, 2011. 24(5): p. 464-470.
[2] Grice EA, Segre JA. The skin microbiome [published correction appears in Nat Rev Microbiol. 2011 Aug;9(8):626]. Nat Rev Microbiol. 2011;9(4):244-253.
[3] Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nat Rev Microbiol, 2018. 16(3): p. 143-155.
[4] Rosso, J.D., et al., Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J Clin Aesthet Dermatol, 2016. 9(4 Suppl 1): p. S2-s8.
[5] Chu, D.M., et al., Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med, 2017. 23(3): p. 314-326.
[6] Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H. Cesarean section and chronic immune disorders. Pediatrics. 2015;135(1):e92-e98.
[7] Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131(10):2026-2032.
[8] Forton, F.M.N., The Pathogenic Role of Demodex Mites in Rosacea: A Potential Therapeutic Target Already in Erythematotelangiectatic Rosacea? Dermatol Ther (Heidelb), 2020. 10(6): p. 1229-1253.
[9] Findley, K., et al., Topographic diversity of fungal and bacterial communities in human skin. Nature, 2013. 498(7454): p. 367-370.
[10] Lundström JN, Olsson MJ. Functional neuronal processing of human body odors. Vitam Horm. 2010;83:1-23.
[11] Coates, M., M.J. Lee, D. Norton, and A.S. MacLeod, The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Front Immunol, 2019. 10: p. 2950.
[12] Salem, I., A. Ramser, N. Isham, and M.A. Ghannoum, The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol, 2018. 9: p. 1459.
[13] Zhang, S., et al., The role of the microbiome in diabetes mellitus. Diabetes Res Clin Pract, 2021. 172: p. 108645.
[14] Howard, B., et al., Aging-Associated Changes in the Adult Human Skin Microbiome and the Host Factors that Affect Skin Microbiome Composition. J Invest Dermatol, 2022. 142(7): p. 1934-1946.e21.
[15] Skowron, K., et al., Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms, 2021. 9(3).
[16] Sanford, J.A. and R.L. Gallo, Functions of the skin microbiota in health and disease. Semin Immunol, 2013. 25(5): p. 370-7.
[17] Santiago-Rodriguez TM, Le François B, Macklaim JM, Doukhanine E, Hollister EB. The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms. 2023;11(5):1222.
[1] Patel KS, Thavamani A. Physiology, Peristalsis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; March 12, 2023.
[2] Lüllmann-Rauch, R., Histologie. 2008: De Boeck Supérieur.
[3] Helander, H.F. and L. Fändriks, Surface area of the digestive tract – revisited. Scand J Gastroenterol, 2014. 49(6): p. 681-9.
[4] Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health. 2021;18(23):12836.
[5] Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel). 2022;12(2):145.
[6] Salinas E, Reyes-Pavón D, Cortes-Perez NG, Torres-Maravilla E, Bitzer-Quintero OK, Langella P, Bermúdez-Humarán LG. Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms. 2021; 9(8):1634.
[7] Ouwerkerk, J.P., W.M. de Vos, and C. Belzer, Glycobiome: bacteria and mucus at the epithelial interface. Best Pract Res Clin Gastroenterol, 2013. 27(1): p. 25-38.
[8] Bell, A. and N. Juge, Mucosal glycan degradation of the host by the gut microbiota. Glycobiology, 2021. 31(6): p. 691-696.
[9] Yang, D., Almanzar, N. & Chiu, I.M. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 20, 1259–1269 (2023).
[10] Vaga S, Lee S, Ji B, et al. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci Rep. 2020;10(1):14977.
[11] Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014;147(5):1055-63.e8.
[12] Chikina A, Matic Vignjevic D. At the right time in the right place: How do luminal gradients position the microbiota along the gut?. Cells Dev. 2021;168:203712.
[13] Mottawea, W., et al., The mucosal–luminal interface: an ideal sample to study the mucosa-associated microbiota and the intestinal microbial biogeography. Pediatric Research, 2019. 85(6): p. 895-903.
[14] Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667-685.
[15] Ruan, W., M.A. Engevik, J.K. Spinler, and J. Versalovic, Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci, 2020. 65(3): p. 695-705.
[16] Engevik AC, Engevik MA. Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J. 2020;19:134-144.
[17] Araos R, D’Agata EMC. The human microbiota and infection prevention. Infect Control Hosp Epidemiol. 2019;40(5):585-589.
[18] Zhou X, Shen X, Johnson JS, et al. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe. 2024;32(4):506-526.e9.
[19] Klymiuk I, Singer G, Castellani C, Trajanoski S, Obermüller B, Till H. Characterization of the Luminal and Mucosa-Associated Microbiome along the Gastrointestinal Tract: Results from Surgically Treated Preterm Infants and a Murine Model. Nutrients. 2021;13(3):1030.
[20] Arumugam, M., et al., Enterotypes of the human gut microbiome. Nature, 2011. 473(7346): p. 174-80.
[21] Ahlawat, S., Asha, and K.K. Sharma, Gut-organ axis: a microbial outreach and networking. Lett Appl Microbiol, 2021. 72(6): p. 636-668.
[22] Schroeder, B.O. and F. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine, 2016. 22(10): p. 1079-1089.
[23] Das, B. and G.B. Nair, Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci, 2019. 44(5).
[24] Storr M. Sinn und Unsinn von Stuhlanalysen. Cme-kurs.de. CME-Verlag. 2023.