Schulungshandbuch: Die Literaturliste
Literaturverzeichnis Modul 1
[1] Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O’Neil, J., and Little, C.T.S. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60-64. 10.1038/nature21377.
[2] Albani, A.E., Bengtson, S., Canfield, D.E., Bekker, A., Macchiarelli, R., Mazurier, A., Hammarlund, E.U., Boulvais, P., Dupuy, J.-J., Fontaine, C., et al. (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100-104. 10.1038/nature09166.
[3] Locey, K.J., and Lennon, J.T. (2016). Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113, 5970-5975. 10.1073/pnas.1521291113.
[4] Vellai, T., and Vida, G. (1999). The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London. Series B: Biological Sciences 266, 1571-1577.
[5] Rosenberg, E., Zilber-Rosenberg, I., Rosenberg, E., and Zilber-Rosenberg, I. (2013). Origin of Prokaryotes and Eukaryotes. The Hologenome Concept: Human, Animal and Plant Microbiota, 9-22.
[6] Woese, C.R., Kandler, O., and Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576-4579. 10.1073/pnas.87.12.4576.
[7] Suerbaum, S., Burchard, G.-D., Kaufmann, S.H., and Schulz, T.F. (2016). Medizinische Mikrobiologie und Infektiologie (Springer-Verlag).
[8] Salton, M. (1953). Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochimica et biophysica acta 10, 512-523.
[9] Groß, U. (2013). Kurzlehrbuch Medizinische Mikrobiologie und Infektiologie (Georg Thieme Verlag).
[10] Moran, A.P., Prendergast, M.M., and Appelmelk, B.J. (1996). Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunology & Medical Microbiology 16, 105-115. 10.1111/j.1574-695X.1996.tb00127.x.
[11] Jann, K., and Jann, B. (2012). Bacterial capsules (Springer Science & Business Media).
[12] Strużycka, I. (2014). The oral microbiome in dental caries. Polish journal of microbiology 63, 127.
[13] Vreeland, R.H., Rosenzweig, W.D., and Powers, D.W. (2000). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897-900.
[14] Steven, B., Chen, M.Q., Greer, C.W., Whyte, L.G., and Niederberger, T.D. (2008). Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. International Journal of Systematic and Evolutionary Microbiology 58, 1497-1501.
[15] Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology 1, 117-126. 10.1038/nrmicro750.
[16] Liu, H., Xu, X., Liang, J., Wang, J., and Li, Y. (2022). The relationship between Clostridium butyricum and colorectal cancer. J Cancer Res Ther 18, 1855-1859. 10.4103/jcrt.jcrt_1565_21.
[17] Griffiths, M.W., and Schraft, H. (2017). Bacillus cereus food poisoning. In Foodborne diseases, (Elsevier), pp. 395-405.
[18] Monaghan, T., Boswell, T., and Mahida, Y.R. (2008). Recent advances in Clostridium difficile-associated disease. Gut 57, 850-860. 10.1136/gut.2007.128157.
[19] Dworkin, M., Falkow, S., Rosenberg, E., Stackebrandt, E., and Schleifer, K.-H. (2006). The prokaryotes: a handbook on the biology of bacteria (Springer).
[20] Conrad, J.C., Gibiansky, M.L., Jin, F., Gordon, V.D., Motto, D.A., Mathewson, M.A., Stopka, W.G., Zelasko, D.C., Shrout, J.D., and Wong, G.C. (2011). Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100, 1608-1616. 10.1016/j.bpj.2011.02.020.
[21] Bente, K., Mohammadinejad, S., Charsooghi, M.A., Bachmann, F., Codutti, A., Lefèvre, C.T., Klumpp, S., and Faivre, D. (2020). High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife 9, e47551. 10.7554/eLife.47551.
[22] Wilson, A.M., Lowe, J.C., Roskilly, K., Hudson, P.E., Golabek, K.A., and McNutt, J.W. (2013). Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185-189. 10.1038/nature12295.
[23] Lux, R., and Shi, W. (2004). Chemotaxis-guided movements in bacteria. Critical Reviews in Oral Biology & Medicine 15, 207-220.
[24] Partridge, J.D., and Harshey, R.M. (2013). Swarming: flexible roaming plans. Journal of bacteriology 195, 909-918.
[25] Ottow, J. (1975). Ecology, physiology, and genetics of fimbriae and pili. Annual review of microbiology 29, 79-108.
[26] Danne, C., and Dramsi, S. (2012). Pili of Gram-positive bacteria: roles in host colonization. Research in Microbiology 163, 645-658. https://doi.org/10.1016/j.resmic.2012.10.012.
[27] Lwoff, A., Van Niel, C., Ryan, P., and Tatum, E. (1946). Nomenclature of nutritional types of microorganisms. (The Biological Laboratory Cold Spring Harbor, NY), pp. 302-303.
[28] Amils, R. (2011). Chemoautotroph. In Encyclopedia of Astrobiology, M. Gargaud, R. Amils, J.C. Quintanilla, H.J. Cleaves, W.M. Irvine, D.L. Pinti, and M. Viso, eds. (Springer Berlin Heidelberg), pp. 288-289. 10.1007/978-3-642-11274-4_271.
[29] Fu, H., Yuan, J., and Gao, H. (2015). Microbial oxidative stress response: novel insights from environmental facultative anaerobic bacteria. Archives of biochemistry and biophysics 584, 28-35.
[30] Vedyaykin, A., Ponomareva, E., Khodorkovskii, M., Borchsenius, S., and Vishnyakov, I. (2019). Mechanisms of bacterial cell division. Microbiology 88, 245-260.
[31] spektrum.de (1999). Escherichia coli. https://www.spektrum.de/lexikon/biologie/escherichia-coli/22571.
[32] RKI (2024). Tuberkulose RKI-Ratgeber. https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Tuberkulose.html.
[33] Schertzer, J.W., and Whiteley, M. (2011). Microbial communication superhighways. Cell 144, 469-470.
[34] Singh, S., and Bhatia, S. (2021). Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. Iran J Pharm Res 20, 486-514. 10.22037/ijpr.2020.113470.14318.
[35] Zhou, L., Zhang, Y., Ge, Y., Zhu, X., and Pan, J. (2020). Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in microbiology 11, 589640.
[36] Ferraz Helene, L.C., Klepa, M.S., and Hungria, M. (2022). New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022, 4623713. 10.1155/2022/4623713.
[37] McFarland, L.V., Evans, C.T., and Goldstein, E.J.C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 5, 124. 10.3389/fmed.2018.00124.
[38] Hudault, S., Guignot, J., and Servin, A.L. (2001). Escherichia coli strains colonising the gastrointestinal tract protect germfree mice againstSalmonella typhimuriuminfection. Gut 49, 47-55.
[39] Lorenz, B., Ali, N., Bocklitz, T., Rösch, P., and Popp, J. (2020). Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy. Analytical and Bioanalytical Chemistry 412, 8241-8247. 10.1007/s00216-020-02957-2.
[1] Appanna, V.D. (2018). Human microbes-the power within: Health, healing and beyond (Springer).
[2] Whipps, J.M., Lewis, K., and Cooke, R. (1988). Mycoparasitism and plant disease control. Manchester University Press Manchester.
[3] The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. (2014). Cell Host Microbe 16, 276-289. 10.1016/j.chom.2014.08.014.
[4] Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., et al. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103. 10.1186/s40168-020-00875-0.
[5] Young, V.B. (2017). The role of the microbiome in human health and disease: an introduction for clinicians. Bmj 356, j831. 10.1136/bmj.j831.
[6] Dürfeld, K. (2020). „Mikroorganismen besitzen Fähigkeiten, die kein anderer Organismus erreicht“. https://www.helmholtz.de/newsroom/artikel/mikroorganismen-besitzen-faehigkeiten-die-kein-anderer-organismus-erreicht/.
[7] Lei, B., Xu, Y., Lei, Y., Li, C., Zhou, P., Wang, L., Yang, Q., Li, X., Li, F., Liu, C., et al. (2023). CRAMdb: a comprehensive database for composition and roles of microbiome in animals. Nucleic Acids Res 51, D700-d707. 10.1093/nar/gkac973.
[8] Witherden, E., and Moyes, D. (2018). Mycobiome and Gut Inflammation. In pp. 271-280. 10.1016/B978-0-12-805417-8.00022-6.
[9] Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G.D., Lewis, J.D., and Bushman, F.D. (2013). Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8, e66019. 10.1371/journal.pone.0066019.
[10] Pérez, J.C. (2021). Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol 311, 151490. 10.1016/j.ijmm.2021.151490.
[11] Mishra, K., Bukavina, L., and Ghannoum, M. (2021). Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 12, 636131. 10.3389/fmicb.2021.636131.
[12] Sachdeva, G., and Das, A. Communication between immune system and mycobiota impacts health and disease.
[13] Barriuso, J., Hogan, D.A., Keshavarz, T., and Martínez, M.J. (2018). Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 42, 627-638. 10.1093/femsre/fuy022.
[14] Balloux, F., and van Dorp, L. (2017). Q&A: What are pathogens, and what have they done to and for us? BMC Biol 15, 91. 10.1186/s12915-017-0433-z.
[15] Koonin, E.V., and Starokadomskyy, P. (2016). Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud Hist Philos Biol Biomed Sci 59, 125-134. 10.1016/j.shpsc.2016.02.016.
[16] Frank, J.A., Singh, M., Cullen, H.B., Kirou, R.A., Benkaddour-Boumzaouad, M., Cortes, J.L., Garcia Pérez, J., Coyne, C.B., and Feschotte, C. (2022). Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422-428. 10.1126/science.abq7871.
[17] Ogilvie, L.A., and Jones, B.V. (2015). The human gut virome: a multifaceted majority. Front Microbiol 6, 918. 10.3389/fmicb.2015.00918.
[18] Shkoporov, A.N., and Hill, C. (2019). Bacteriophages of the Human Gut: The „Known Unknown“ of the Microbiome. Cell Host Microbe 25, 195-209. 10.1016/j.chom.2019.01.017.
[19] Xu, H.M., Xu, W.M., and Zhang, L. (2022). Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022, 4913146. 10.1155/2022/4913146.
[20] Gostimskaya, I. (2022). CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry (Mosc) 87, 777-788. 10.1134/s0006297922080090.
[21] Albani, A.E., Bengtson, S., Canfield, D.E., Bekker, A., Macchiarelli, R., Mazurier, A., Hammarlund, E.U., Boulvais, P., Dupuy, J.-J., Fontaine, C., et al. (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100-104. 10.1038/nature09166.
[22] Deng, Y.J., and Wang, S.Y. (2016). Synergistic growth in bacteria depends on substrate complexity. J Microbiol 54, 23-30. 10.1007/s12275-016-5461-9.
[23] Haque, S.Z., and Haque, M. (2017). The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms – an appraisal. Clin Exp Gastroenterol 10, 91-103. 10.2147/ceg.S126243.
[24] Martin, K. (2002). Mutualismus. In Ökologie der Biozönosen, (Springer Berlin Heidelberg), pp. 127-148. 10.1007/978-3-662-09050-3_6.
[25] Curtis, M.M., and Sperandio, V. (2011). A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol 4, 133-138. 10.1038/mi.2010.89.
[26] Thomas, F., and Thomas, F. (2018). Ökologische Interaktionen. Grundzüge der Pflanzenökologie, 111-132.
[27] Dodd, C., and Grueber, C. (2021). Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation 1, 311-326. 10.3390/conservation1040024.
[28] Escalas, A., Hale, L., Voordeckers, J.W., Yang, Y., Firestone, M.K., Alvarez-Cohen, L., and Zhou, J. (2019). Microbial functional diversity: From concepts to applications. Ecol Evol 9, 12000-12016. 10.1002/ece3.5670.
[29] Thomas, A.M., and Segata, N. (2019). Multiple levels of the unknown in microbiome research. BMC Biology 17, 48. 10.1186/s12915-019-0667-z.
[30] Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H.M.B., Mattarelli, P., O’Toole, P.W., Pot, B., Vandamme, P., Walter, J., et al. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70, 2782-2858. 10.1099/ijsem.0.004107.
[1] Finishing the euchromatic sequence of the human genome. (2004). Nature 431, 931-945. 10.1038/nature03001.
[2] Proctor, L.M., Creasy, H.H., Fettweis, J.M., Lloyd-Price, J., Mahurkar, A., Zhou, W., Buck, G.A., Snyder, M.P., Strauss, J.F., Weinstock, G.M., et al. (2019). The Integrative Human Microbiome Project. Nature 569, 641-648. 10.1038/s41586-019-1238-8.
[3] Kwa, W.T., Sundarajoo, S., Toh, K.Y., and Lee, J. (2023). Application of emerging technologies for gut microbiome research. Singapore Med J 64, 45-52. 10.4103/singaporemedj.SMJ-2021-432.
[4] Kim, Y., Koh, I., Young Lim, M., Chung, W.H., and Rho, M. (2017). Pan-genome analysis of Bacillus for microbiome profiling. Sci Rep 7, 10984. 10.1038/s41598-017-11385-9.
[5] Sender, R., Fuchs, S., and Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 14, e1002533. 10.1371/journal.pbio.1002533.
[6] Appanna, V.D. (2018). Human microbes-the power within: Health, healing and beyond (Springer).
[7] Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007). The human microbiome project. Nature 449, 804-810. 10.1038/nature06244.
[8] Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 7. 10.3390/microorganisms7010014.
[9] Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220-230. 10.1038/nature11550.
[10] Sharon, I., Quijada, N.M., Pasolli, E., Fabbrini, M., Vitali, F., Agamennone, V., Dötsch, A., Selberherr, E., Grau, J.H., Meixner, M., et al. (2022). The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 14. 10.3390/nu14142872.
[11] Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.M., et al. (2011). Enterotypes of the human gut microbiome. Nature 473, 174-180. 10.1038/nature09944.
[12] Suerbaum, S., Burchard, G.-D., Kaufmann, S.H., and Schulz, T.F. (2016). Medizinische Mikrobiologie und Infektiologie (Springer-Verlag).
[13] Haller, D., and Hörmannsperger, G. (2014). Darmgesundheit und Mikrobiota: ein Überblick über die Bedeutung der Darmbakterien für die Gesundheit.
[14] Schreiber, F., Balas, I., Robinson, M.J., and Bakdash, G. (2024). Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 13. 10.3390/cells13060477.
[15] Oliphant, K., and Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91. 10.1186/s40168-019-0704-8.
[16] Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165, 1332-1345. 10.1016/j.cell.2016.05.041.
[17] LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D., and Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005.
[18] Rowland, I.R., and Grasso, P. (1975). Degradation of N-nitrosamines by intestinal bacteria. Appl Microbiol 29, 7-12. 10.1128/am.29.1.7-12.1975.
[19] Pandolfo, E., Barra Caracciolo, A., and Rolando, L. (2023). Recent Advances in Bacterial Degradation of Hydrocarbons. Water 15, 375.
[20] Boekhorst, J., Venlet, N., Procházková, N., Hansen, M.L., Lieberoth, C.B., Bahl, M.I., Lauritzen, L., Pedersen, O., Licht, T.R., Kleerebezem, M., and Roager, H.M. (2022). Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes. Microbiome 10, 223. 10.1186/s40168-022-01418-5.
[21] Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 9, 44. 10.3389/fpsyt.2018.00044.
[22] Baghai, T.C., and Rupprecht, R. (2015). Dickdarmmikrobiom, Stressregulation, Inflammation und Psyche. DNP-Der Neurologe und Psychiater 16, 30-34.
[23] Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., and Knight, R. (2018). Current understanding of the human microbiome. Nat Med 24, 392-400. 10.1038/nm.4517.
[24] Arrieta, M.C., Stiemsma, L.T., Amenyogbe, N., Brown, E.M., and Finlay, B. (2014). The intestinal microbiome in early life: health and disease. Front Immunol 5, 427. 10.3389/fimmu.2014.00427.
[25] Ursell, L.K., Metcalf, J.L., Parfrey, L.W., and Knight, R. (2012). Defining the human microbiome. Nutr Rev 70 Suppl 1, S38-44. 10.1111/j.1753-4887.2012.00493.x.
[26] Wen, L., and Duffy, A. (2017). Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr 147, 1468s-1475s. 10.3945/jn.116.240754.
[27] Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., and Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107, 11971-11975. 10.1073/pnas.1002601107.
[28] Kort, R., Caspers, M., van de Graaf, A., van Egmond, W., Keijser, B., and Roeselers, G. (2014). Shaping the oral microbiota through intimate kissing. Microbiome 2, 41. 10.1186/2049-2618-2-41.
[29] Cho, I., and Blaser, M.J. (2012). The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260-270. 10.1038/nrg3182.
[30] Araos, R., and D’Agata, E.M.C. (2019). The human microbiota and infection prevention. Infect Control Hosp Epidemiol 40, 585-589. 10.1017/ice.2019.28.
[31] Quigley, E.M.M., and Gajula, P. (2020). Recent advances in modulating the microbiome. F1000Res 9. 10.12688/f1000research.20204.1.
[32] Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73. 10.1186/s12967-017-1175-y.
[1] Li, H., Zang, Y., Wang, C., Li, H., Fan, A., Han, C., and Xue, F. (2020). The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 10, 609488. 10.3389/fcimb.2020.609488.
[2] Mendling, W. (2016). Vaginal Microbiota. Adv Exp Med Biol 902, 83-93. 10.1007/978-3-319-31248-4_6.
[3] Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., et al. (2011). Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108 Suppl 1, 4680-4687. 10.1073/pnas.1002611107.
[4] Ma, Z.S., and Li, L. (2017). Quantifying the human vaginal community state types (CSTs) with the species specificity index. PeerJ 5, e3366.
[5] Kalia, N., Singh, J., and Kaur, M. (2020). Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Annals of Clinical Microbiology and Antimicrobials 19, 5. 10.1186/s12941-020-0347-4.
[6] Pascual, L.M., Daniele, M.B., Pájaro, C., and Barberis, L. (2006). Lactobacillus species isolated from the vagina: identification, hydrogen peroxide production and nonoxynol-9 resistance. Contraception 73, 78-81.
[7] Satpute, S.K., Kulkarni, G.R., Banpurkar, A.G., Banat, I.M., Mone, N.S., Patil, R.H., and Cameotra, S.S. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. J Basic Microbiol 56, 1140-1158. 10.1002/jobm.201600143.
[8] Gupta, S., Kakkar, V., and Bhushan, I. (2019). Crosstalk between Vaginal Microbiome and Female Health: A review. Microbial Pathogenesis 136, 103696. https://doi.org/10.1016/j.micpath.2019.103696.
[9] Kaur, H., Merchant, M., Haque, M.M., and Mande, S.S. (2020). Crosstalk Between Female Gonadal Hormones and Vaginal Microbiota Across Various Phases of Women’s Gynecological Lifecycle. Front Microbiol 11, 551. 10.3389/fmicb.2020.00551.
[10] Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T.A., Coarfa, C., Raza, S., Rosenbaum, S., Van den Veyver, I., Milosavljevic, A., et al. (2012). A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7, e36466. 10.1371/journal.pone.0036466.
[11] Petricevic, L., Domig, K.J., Nierscher, F.J., Krondorfer, I., Janitschek, C., Kneifel, W., and Kiss, H. (2012). Characterisation of the oral, vaginal and rectal Lactobacillus flora in healthy pregnant and postmenopausal women. Eur J Obstet Gynecol Reprod Biol 160, 93-99. 10.1016/j.ejogrb.2011.10.002.
[12] Goerke, K., Steller, J., and Valet, A. (2018). Klinikleitfaden Gynäkologie Geburtshilfe (Elsevier Health Sciences).
[13] Greenbaum, S., Greenbaum, G., Moran-Gilad, J., and Weintraub, A.Y. (2019). Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol 220, 324-335. 10.1016/j.ajog.2018.11.1089.
[14] Shipitsyna, E., Khusnutdinova, T., Budilovskaya, O., Krysanova, A., Shalepo, K., Savicheva, A., and Unemo, M. (2020). Bacterial vaginosis-associated vaginal microbiota is an age-independent risk factor for Chlamydia trachomatis, Mycoplasma genitalium and Trichomonas vaginalis infections in low-risk women, St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis 39, 1221-1230. 10.1007/s10096-020-03831-w.
[15] Money, D. (2005). The laboratory diagnosis of bacterial vaginosis. Can J Infect Dis Med Microbiol 16, 77-79. 10.1155/2005/230319.
[1] Goedicke-Fritz, S., Härtel, C., Bals, R., and Zemlin, M. (2019). Microbiome of the lungs. Monatsschrift fur Kinderheilkunde 167, 404-410. 10.1007/s00112-019-0691-7.
[2] Man, W.H., de Steenhuijsen Piters, W.A., and Bogaert, D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15, 259-270. 10.1038/nrmicro.2017.14.
[3] Kumpitsch, C., Koskinen, K., Schöpf, V., and Moissl-Eichinger, C. (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biol 17, 87. 10.1186/s12915-019-0703-z.
[4] Fahy, J.V., and Dickey, B.F. (2010). Airway mucus function and dysfunction. N Engl J Med 363, 2233-2247. 10.1056/NEJMra0910061.
[5] Xu, L., and Jiang, Y. (2019). Mathematical Modeling of Mucociliary Clearance: A Mini-Review. Cells 8. 10.3390/cells8070736.
[6] Weinberger, S.E., Cockrill, B.A., and Mandel, J. (2023). Principles of Pulmonary Medicine, 7. Edition (Elsevier).
[7] Gopallawa, I., Dehinwal, R., Bhatia, V., Gujar, V., and Chirmule, N. (2023). A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 14, 1119564. 10.3389/fimmu.2023.1119564.
[8] Lai, D.M., Shu, Q., and Fan, J. (2016). The origin and role of innate lymphoid cells in the lung. Mil Med Res 3, 25. 10.1186/s40779-016-0093-2.
[9] Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., and Huffnagle, G.B. (2016). The Microbiome and the Respiratory Tract. Annu Rev Physiol 78, 481-504. 10.1146/annurev-physiol-021115-105238.
[10] Sommariva, M., Le Noci, V., Bianchi, F., Camelliti, S., Balsari, A., Tagliabue, E., and Sfondrini, L. (2020). The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 77, 2739-2749. 10.1007/s00018-020-03452-8.
[11] Huffnagle, G.B., Dickson, R.P., and Lukacs, N.W. (2017). The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 10, 299-306. 10.1038/mi.2016.108.
[12] Wypych, T.P., Wickramasinghe, L.C., and Marsland, B.J. (2019). The influence of the microbiome on respiratory health. Nat Immunol 20, 1279-1290. 10.1038/s41590-019-0451-9.
[13] Dima, E., Kyriakoudi, A., Kaponi, M., Vasileiadis, I., Stamou, P., Koutsoukou, A., Koulouris, N.G., and Rovina, N. (2019). The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med 157, 1-6. 10.1016/j.rmed.2019.08.012.
[14] Mathieu, E., Escribano-Vazquez, U., Descamps, D., Cherbuy, C., Langella, P., Riffault, S., Remot, A., and Thomas, M. (2018). Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Front Physiol 9, 1168. 10.3389/fphys.2018.01168.
[15] Budden, K.F., Shukla, S.D., Rehman, S.F., Bowerman, K.L., Keely, S., Hugenholtz, P., Armstrong-James, D.P.H., Adcock, I.M., Chotirmall, S.H., Chung, K.F., and Hansbro, P.M. (2019). Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 7, 907-920. 10.1016/s2213-2600(18)30510-1.
[1] Hwa, C., Bauer, E.A., and Cohen, D.E. (2011). Skin biology. Dermatologic therapy 24, 464-470.
[2] Grice, E.A., and Segre, J.A. (2011). The skin microbiome. Nat Rev Microbiol 9, 244-253. 10.1038/nrmicro2537.
[3] Byrd, A.L., Belkaid, Y., and Segre, J.A. (2018). The human skin microbiome. Nat Rev Microbiol 16, 143-155. 10.1038/nrmicro.2017.157.
[4] Rosso, J.D., Zeichner, J., Alexis, A., Cohen, D., and Berson, D. (2016). Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J Clin Aesthet Dermatol 9, S2-s8.
[5] Chu, D.M., Ma, J., Prince, A.L., Antony, K.M., Seferovic, M.D., and Aagaard, K.M. (2017). Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 23, 314-326. 10.1038/nm.4272.
[6] Sevelsted, A., Stokholm, J., Bønnelykke, K., and Bisgaard, H. (2015). Cesarean section and chronic immune disorders. Pediatrics 135, e92-98. 10.1542/peds.2014-0596.
[7] Capone, K.A., Dowd, S.E., Stamatas, G.N., and Nikolovski, J. (2011). Diversity of the human skin microbiome early in life. J Invest Dermatol 131, 2026-2032. 10.1038/jid.2011.168.
[8] Forton, F.M.N. (2020). The Pathogenic Role of Demodex Mites in Rosacea: A Potential Therapeutic Target Already in Erythematotelangiectatic Rosacea? Dermatol Ther (Heidelb) 10, 1229-1253. 10.1007/s13555-020-00458-9.
[9] Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J.A., Schoenfeld, D., Nomicos, E., Park, M., Becker, J., et al. (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367-370. 10.1038/nature12171.
[10] Lundström, J.N., and Olsson, M.J. (2010). Functional neuronal processing of human body odors. Vitam Horm 83, 1-23. 10.1016/s0083-6729(10)83001-8.
[11] Coates, M., Lee, M.J., Norton, D., and MacLeod, A.S. (2019). The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Front Immunol 10, 2950. 10.3389/fimmu.2019.02950.
[12] Salem, I., Ramser, A., Isham, N., and Ghannoum, M.A. (2018). The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol 9, 1459. 10.3389/fmicb.2018.01459.
[13] Zhang, S., Cai, Y., Meng, C., Ding, X., Huang, J., Luo, X., Cao, Y., Gao, F., and Zou, M. (2021). The role of the microbiome in diabetes mellitus. Diabetes Res Clin Pract 172, 108645. 10.1016/j.diabres.2020.108645.
[14] Howard, B., Bascom, C.C., Hu, P., Binder, R.L., Fadayel, G., Huggins, T.G., Jarrold, B.B., Osborne, R., Rocchetta, H.L., Swift, D., et al. (2022). Aging-Associated Changes in the Adult Human Skin Microbiome and the Host Factors that Affect Skin Microbiome Composition. J Invest Dermatol 142, 1934-1946.e1921. 10.1016/j.jid.2021.11.029.
[15] Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J., Wałecka-Zacharska, E., Radtke, L., and Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 9. 10.3390/microorganisms9030543.
[16] Sanford, J.A., and Gallo, R.L. (2013). Functions of the skin microbiota in health and disease. Semin Immunol 25, 370-377. 10.1016/j.smim.2013.09.005.
[17] Santiago-Rodriguez, T.M., Le François, B., Macklaim, J.M., Doukhanine, E., and Hollister, E.B. (2023). The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms 11. 10.3390/microorganisms11051222.
[1] Patel, K.S., and Thavamani, A. (2024). Physiology, Peristalsis. In StatPearls, (StatPearls Publishing LLC.).
[2] Lüllmann-Rauch, R. (2008). Histologie (De Boeck Supérieur).
[3] Helander, H.F., and Fändriks, L. (2014). Surface area of the digestive tract – revisited. Scand J Gastroenterol 49, 681-689. 10.3109/00365521.2014.898326.
[4] Di Tommaso, N., Gasbarrini, A., and Ponziani, F.R. (2021). Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health 18. 10.3390/ijerph182312836.
[5] Gieryńska, M., Szulc-Dąbrowska, L., Struzik, J., Mielcarska, M.B., and Gregorczyk-Zboroch, K.P. (2022). Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 12. 10.3390/ani12020145.
[6] Salinas, E., Reyes-Pavón, D., Cortes-Perez, N.G., Torres-Maravilla, E., Bitzer-Quintero, O.K., Langella, P., and Bermúdez-Humarán, L.G. (2021). Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms 9. 10.3390/microorganisms9081634.
[7] Ouwerkerk, J.P., de Vos, W.M., and Belzer, C. (2013). Glycobiome: bacteria and mucus at the epithelial interface. Best Pract Res Clin Gastroenterol 27, 25-38. 10.1016/j.bpg.2013.03.001.
[8] Bell, A., and Juge, N. (2021). Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 31, 691-696. 10.1093/glycob/cwaa097.
[9] Yang, D., Almanzar, N., and Chiu, I.M. (2023). The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cellular & Molecular Immunology 20, 1259-1269. 10.1038/s41423-023-01054-5.
[10] Vaga, S., Lee, S., Ji, B., Andreasson, A., Talley, N.J., Agréus, L., Bidkhori, G., Kovatcheva-Datchary, P., Park, J., Lee, D., et al. (2020). Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports 10, 14977. 10.1038/s41598-020-71939-2.
[11] Albenberg, L., Esipova, T.V., Judge, C.P., Bittinger, K., Chen, J., Laughlin, A., Grunberg, S., Baldassano, R.N., Lewis, J.D., Li, H., et al. (2014). Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055-1063.e1058. 10.1053/j.gastro.2014.07.020.
[12] Chikina, A., and Matic Vignjevic, D. (2021). At the right time in the right place: How do luminal gradients position the microbiota along the gut? Cells Dev 168, 203712. 10.1016/j.cdev.2021.203712.
[13] Mottawea, W., Butcher, J., Li, J., Abujamel, T., Manoogian, J., Mack, D., and Stintzi, A. (2019). The mucosal–luminal interface: an ideal sample to study the mucosa-associated microbiota and the intestinal microbial biogeography. Pediatric Research 85, 895-903. 10.1038/s41390-019-0326-7.
[14] Mowat, A.M., and Agace, W.W. (2014). Regional specialization within the intestinal immune system. Nat Rev Immunol 14, 667-685. 10.1038/nri3738.
[15] Ruan, W., Engevik, M.A., Spinler, J.K., and Versalovic, J. (2020). Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 65, 695-705. 10.1007/s10620-020-06118-4.
[16] Engevik, A.C., and Engevik, M.A. (2021). Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 19, 134-144. 10.1016/j.csbj.2020.12.008.
[17] Araos, R., and D’Agata, E.M.C. (2019). The human microbiota and infection prevention. Infect Control Hosp Epidemiol 40, 585-589. 10.1017/ice.2019.28.
[18] Zhou, X., Shen, X., Johnson, J.S., Spakowicz, D.J., Agnello, M., Zhou, W., Avina, M., Honkala, A., Chleilat, F., Chen, S.J., et al. (2024). Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 32, 506-526.e509. 10.1016/j.chom.2024.02.012.
[19] Klymiuk, I., Singer, G., Castellani, C., Trajanoski, S., Obermüller, B., and Till, H. (2021). Characterization of the Luminal and Mucosa-Associated Microbiome along the Gastrointestinal Tract: Results from Surgically Treated Preterm Infants and a Murine Model. Nutrients 13. 10.3390/nu13031030.
[20] Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.M., et al. (2011). Enterotypes of the human gut microbiome. Nature 473, 174-180. 10.1038/nature09944.
[21] Ahlawat, S., Asha, and Sharma, K.K. (2021). Gut-organ axis: a microbial outreach and networking. Lett Appl Microbiol 72, 636-668. 10.1111/lam.13333.
[22] Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine 22, 1079-1089.
[23] Das, B., and Nair, G.B. (2019). Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci 44.
[24] Storr, M. (2024). Sinn und Unsinn von Stuhlanalysen. https://www.cme-kurs.de/kurse/sinn-und-unsinn-von-stuhlanalysen/.