Direkt zum Inhalt wechseln

Literaturliste Schulungshandbuch Mikrobiom Berater:in

Literaturverzeichnis Modul 2

[1] Dobell, C., and Leeuwenhoek, A.v. (1932). Antony van Leeuwenhoek and his „Little animals“; being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines (Harcourt, Brace and company).

[2] Semmelweis, I.P. (1861). Die Aetiologie, der Begriff und die Prophylaxis des Kindbettfiebers (Hartleben).

[3] Best, M., and Neuhauser, D. (2004). Ignaz Semmelweis and the birth of infection control. BMJ Quality & Safety 13, 233-234.

[4] Röhrlich, D. (2016). Ein Gigantenduell das Leben rettete. https://www.deutschlandfunk.de/wissenschaftsgeschichte-ein-gigantenduell-das-leben-rettete-100.html.

[5] Schwartz, M. (2001). The life and works of Louis Pasteur. Journal of Applied Microbiology 91, 597-601.

[6] Pasteur, L. (2002). Summary report of the experiments conducted at Pouilly-le-Fort, near Melun, on the anthrax vaccination, 1881. The Yale journal of biology and medicine 75, 59.

[7] Koch, R. (1881). Zur Untersuchung von pathogenen Organismen (Norddeutschen Buchdruckerei und Verlagsanstalt).

[8] Koch, R. (1893). Wasserfiltration und cholera. Zeitschrift für Hygiene und Infektionskrankheiten 14, 393-426.

[9] Wieninger, K. (1987). Max von Pettenkofer – Das Leben eines Wohltäters – 1818-1901 ( Hugendubel Verlagshaus GmbH ).

[10] Ackert, L.T. (2006). The Role of Microbes in Agriculture: Sergei Vinogradskii’s Discovery and Investigation of Chemosynthesis, 1880–1910. Journal of the History of Biology 39, 373-406. 10.1007/s10739-006-0008-2.

[11] Wang, G., Ren, Y., Bai, X., Su, Y., and Han, J. (2022). Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants (Basel) 11. 10.3390/plants11233200.

[12] Bested, A.C., Logan, A.C., and Selhub, E.M. (2013). Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I – autointoxication revisited. Gut Pathogens 5, 5. 10.1186/1757-4749-5-5.

[13] Mathias, M. (2018). Autointoxication and historical precursors of the microbiome–gut–brain axis. Microbial Ecology in Health and Disease 29, 1548249. 10.1080/16512235.2018.1548249.

[14] Woese, C.R., Kandler, O., and Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576-4579. 10.1073/pnas.87.12.4576.

[15] Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Disease journal 23, 849. 10.3201/eid2305.161556.

[16] Nature Milestones: Milestones in human microbiota research. (2019). https://www.nature.com/immersive/d42859-019-00041-z/index.html

[17] Hungate, R.E. (1950). The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14, 1-49. 10.1128/br.14.1.1-49.1950.

[18] Schaedler, R.W., Dubs, R., and Costello, R. (1965). ASSOCIATION OF GERMFREE MICE WITH BACTERIA ISOLATED FROM NORMAL MICE. J Exp Med 122, 77-82. 10.1084/jem.122.1.77.

[19] Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031. 10.1038/nature05414.

[20] Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467. 10.1073/pnas.74.12.5463.

[21] Zhulin, I.B. (2016). Classic Spotlight: 16S rRNA Redefines Microbiology. J Bacteriol 198, 2764-2765. 10.1128/jb.00616-16.

[22] Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955-6959. 10.1073/pnas.82.20.6955.

[23] Wilson, K.H., and Blitchington, R.B. (1996). Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62, 2273-2278. 10.1128/aem.62.7.2273-2278.1996.

[24] Patrick, K. (2007). 454 life sciences: illuminating the future of genome sequencing and personalized medicine. Yale J Biol Med 80, 191-194.

[25] Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007). The human microbiome project. Nature 449, 804-810. 10.1038/nature06244.

[26] Thomas, A.M., and Segata, N. (2019). Multiple levels of the unknown in microbiome research. BMC Biology 17, 48. 10.1186/s12915-019-0667-z.

[27] Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M., Giannoukos, G., Boylan, M.R., Ciulla, D., Gevers, D., et al. (2014). Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111, E2329-2338. 10.1073/pnas.1319284111.

[1] Buttó, L.F., and Haller, D. (2016). Dysbiosis in intestinal inflammation: Cause or consequence. Int J Med Microbiol 306, 302-309. 10.1016/j.ijmm.2016.02.010.

[2] Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., and Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol 39, 1-12.

[3] Gupta, V.K., Paul, S., and Dutta, C. (2017). Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front Microbiol 8, 1162. 10.3389/fmicb.2017.01162.

[4] Sharon, I., Quijada, N.M., Pasolli, E., Fabbrini, M., Vitali, F., Agamennone, V., Dötsch, A., Selberherr, E., Grau, J.H., Meixner, M., et al. (2022). The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 14. 10.3390/nu14142872.

[5] Raymond, F., Boissinot, M., Ouameur, A.A., Déraspe, M., Plante, P.L., Kpanou, S.R., Bérubé, È., Huletsky, A., Roy, P.H., Ouellette, M., et al. (2019). Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome 7, 56. 10.1186/s40168-019-0669-7.

[6] DeGruttola, A.K., Low, D., Mizoguchi, A., and Mizoguchi, E. (2016). Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis 22, 1137-1150. 10.1097/mib.0000000000000750.

[7] Cho, I., and Blaser, M.J. (2012). The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260-270. 10.1038/nrg3182.

[8] Fassarella, M., Blaak, E.E., Penders, J., Nauta, A., Smidt, H., and Zoetendal, E.G. (2021). Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 70, 595-605. 10.1136/gutjnl-2020-321747.

[9] Hrncir, T. (2022). Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 10. 10.3390/microorganisms10030578.

[10] Ney, L.M., Wipplinger, M., Grossmann, M., Engert, N., Wegner, V.D., and Mosig, A.S. (2023). Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 13, 230014. 10.1098/rsob.230014.

[11] Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., and Narasimhan, G. (2016). Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evol Bioinform Online 12, 5-16. 10.4137/ebo.S36436.

[12] Allaband, C., McDonald, D., Vázquez-Baeza, Y., Minich, J.J., Tripathi, A., Brenner, D.A., Loomba, R., Smarr, L., Sandborn, W.J., Schnabl, B., et al. (2019). Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clin Gastroenterol Hepatol 17, 218-230. 10.1016/j.cgh.2018.09.017.

[13] Tang, Q., Jin, G., Wang, G., Liu, T., Liu, X., Wang, B., and Cao, H. (2020). Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol 10, 151. 10.3389/fcimb.2020.00151.

[14] Wei, S., Bahl, M.I., Baunwall, S.M.D., Hvas, C.L., and Licht, T.R. (2021). Determining Gut Microbial Dysbiosis: a Review of Applied Indexes for Assessment of Intestinal Microbiota Imbalances. Appl Environ Microbiol 87. 10.1128/aem.00395-21.

[1] Hanefeld, M. (2006). Das metabolische Syndrom. Diabetologie und Stoffwechsel 1, 303-304.

[2] Blüher, M., and Stumvoll, M. (2006). Das metabolische Syndrom-Mythen, Mechanismen, Management. DMW-Deutsche Medizinische Wochenschrift 131, 1167-1172.

[3] Grundy, S.M. (2008). Metabolic syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology 28, 629-636.

[4] Edmonds, M., Manu, C., and Vas, P. (2021). The current burden of diabetic foot disease. J Clin Orthop Trauma 17, 88-93. 10.1016/j.jcot.2021.01.017.

[5] Köster, I., Schubert, I., and Huppertz, E. (2012). Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. Dtsch Med Wochenschr 137, 1013-1016. 10.1055/s-0032-1304891.

[6] Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E., and Makaroff, L.E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice 128, 40-50. https://doi.org/10.1016/j.diabres.2017.03.024.

[7] Hauner, H., Moss, A., Berg, A., Bischoff, S.C., Colombo-Benkmann, M., Ellrott, T., Heintze, C., Kanthak, U., Kunze, D., Stefan, N., et al. (2014). Interdisziplinäre Leitlinie der Qualität S3 zur „Prävention und Therapie der Adipositas”. der Deutschen Adipositas-Gesellschaft e.V.; der Deutschen Diabetes Gesellschaft; der Deutschen Gesellschaft für Ernährung e.V.; der Deutschen Gesellschaft für Ernährungsmedizin e.V. Version 2.0 (April 2014); AWMF-Register Nr. 050-001 08, 179-221. 10.1055/s-0037-1618857.

[8] Wang, P.X., Deng, X.R., Zhang, C.H., and Yuan, H.J. (2020). Gut microbiota and metabolic syndrome. Chin Med J (Engl) 133, 808-816. 10.1097/cm9.0000000000000696.

[9] Ford, E.S. (2005). Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 28, 2745-2749. 10.2337/diacare.28.11.2745.

[10] Safaei, M., Sundararajan, E.A., Driss, M., Boulila, W., and Shapi’i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Biol Med 136, 104754. 10.1016/j.compbiomed.2021.104754.

[11] Kim, S.Y. (2016). The definition of obesity. Korean journal of family medicine 37, 309-309.

[12] Consultation, W.E. (2008). Waist circumference and waist-hip ratio. Report of a WHO Expert Consultation. Geneva: World Health Organization 2008, 8-11.

[13] Bäckhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104, 979-984. 10.1073/pnas.0605374104.

[14] Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214. 10.1126/science.1241214.

[15] Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. 10.1038/4441022a.

[16] Armougom, F., Henry, M., Vialettes, B., Raccah, D., and Raoult, D. (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4, e7125. 10.1371/journal.pone.0007125.

[17] Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457, 480-484. 10.1038/nature07540.

[18] Sommer, F., and Bäckhed, F. (2013). The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11, 227-238. 10.1038/nrmicro2974.

[19] Sanmiguel, C., Gupta, A., and Mayer, E.A. (2015). Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr Obes Rep 4, 250-261. 10.1007/s13679-015-0152-0.

[20] Turnbaugh, P.J., Bäckhed, F., Fulton, L., and Gordon, J.I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223. 10.1016/j.chom.2008.02.015.

[21] Xu, Y., Wang, N., Tan, H.Y., Li, S., Zhang, C., and Feng, Y. (2020). Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol 11, 219. 10.3389/fmicb.2020.00219.

[22] Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., and Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 12. 10.3390/nu12051474.

[23] Sze, M.A., and Schloss, P.D. (2016). Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. mBio 7. 10.1128/mBio.01018-16.

[24] Castaner, O., Goday, A., Park, Y.M., Lee, S.H., Magkos, F., Shiow, S.T.E., and Schröder, H. (2018). The Gut Microbiome Profile in Obesity: A Systematic Review. Int J Endocrinol 2018, 4095789. 10.1155/2018/4095789.

[25] Chakraborti, C.K. (2015). New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6, 110-119. 10.4291/wjgp.v6.i4.110.

[26] Isolauri, E., Salminen, S., and Rautava, S. (2016). Early Microbe Contact and Obesity Risk: Evidence Of Causality? J Pediatr Gastroenterol Nutr 63 Suppl 1, S3-5. 10.1097/mpg.0000000000001220.

[27] Chen, L.-W., Xu, J., Soh, S.E., Aris, I.M., Tint, M.-T., Gluckman, P.D., Tan, K.H., Shek, L.P.-C., Chong, Y.-S., Yap, F., et al. (2020). Implication of gut microbiota in the association between infant antibiotic exposure and childhood obesity and adiposity accumulation. International Journal of Obesity 44, 1508-1520. 10.1038/s41366-020-0572-0.

[28] Bianchi, F., Duque, A., Saad, S.M.I., and Sivieri, K. (2019). Gut microbiome approaches to treat obesity in humans. Appl Microbiol Biotechnol 103, 1081-1094. 10.1007/s00253-018-9570-8.

[29] Winer, D.A., Luck, H., Tsai, S., and Winer, S. (2016). The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metab 23, 413-426. 10.1016/j.cmet.2016.01.003.

[30] Unwin, N., Gan, D., and Whiting, D. (2010). The IDF Diabetes Atlas: providing evidence, raising awareness and promoting action. Diabetes Res Clin Pract 87, 2-3. 10.1016/j.diabres.2009.11.006.

[31] Zhou, H., Sun, L., Zhang, S., Zhao, X., Gang, X., and Wang, G. (2020). Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Frontiers in Endocrinology 11. 10.3389/fendo.2020.00125.

[32] Smushkin, G., and Vella, A. (2010). What is type 2 diabetes? Medicine 38, 597-601.

[33] Muñoz-Garach, A., Diaz-Perdigones, C., and Tinahones, F.J. (2016). Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 63, 560-568. 10.1016/j.endonu.2016.07.008.

[34] Schippa, S., and Conte, M.P. (2014). Dysbiotic events in gut microbiota: impact on human health. Nutrients 6, 5786-5805. 10.3390/nu6125786.

[35] Ejtahed, H.S., Hoseini-Tavassol, Z., Khatami, S., Zangeneh, M., Behrouzi, A., Ahmadi Badi, S., Moshiri, A., Hasani-Ranjbar, S., Soroush, A.R., Vaziri, F., et al. (2020). Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J Diabetes Metab Disord 19, 265-271. 10.1007/s40200-020-00502-7.

[36] Brunt, E.M. (2001). Nonalcoholic steatohepatitis: definition and pathology. In 01. (Copyright© 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New …), pp. 003-016.

[37] Amini, M., Zayeri, F., and Salehi, M. (2021). Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health 21, 1-12.

[38] Kjeldsen, S.E. (2018). Hypertension and cardiovascular risk: General aspects. Pharmacological research 129, 95-99.

[39] Yang, T., Santisteban, M.M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J.M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., et al. (2015). Gut dysbiosis is linked to hypertension. Hypertension 65, 1331-1340. 10.1161/hypertensionaha.115.05315.

[40] Nesci, A., Carnuccio, C., Ruggieri, V., D’Alessandro, A., Di Giorgio, A., Santoro, L., Gasbarrini, A., Santoliquido, A., and Ponziani, F.R. (2023). Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 24. 10.3390/ijms24109087.

[41] Marques, F.Z., Nelson, E., Chu, P.Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J.K., Kuruppu, S., Rajapakse, N.W., El-Osta, A., et al. (2017). High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 135, 964-977. 10.1161/circulationaha.116.024545.

[42] Wilck, N., Matus, M.G., Kearney, S.M., Olesen, S.W., Forslund, K., Bartolomaeus, H., Haase, S., Mähler, A., Balogh, A., Markó, L., et al. (2017). Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 551, 585-589. 10.1038/nature24628.

[43] Mao, Y., Kong, C., Zang, T., You, L., Wang, L.-S., Shen, L., and Ge, J.-B. (2024). Impact of the gut microbiome on atherosclerosis. mLife 0, 1-9. https://doi.org/10.1002/mlf2.12110.

[44] Cretoiu, D., Ionescu, R.F., Enache, R.M., Cretoiu, S.M., and Voinea, S.C. (2021). Gut Microbiome, Functional Food, Atherosclerosis, and Vascular Calcifications-Is There a Missing Link? Microorganisms 9. 10.3390/microorganisms9091913.

[45] Nam, H.S. (2019). Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. J Stroke 21, 151-159. 10.5853/jos.2019.00472.

[1] Murphy, K., and Weaver, C. (2018). Janeway Immunologie (Springer Spektrum Berlin). https://doi.org/10.1007/978-3-662-56004-4.

[2] Sharma, L., and Riva, A. (2020). Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 8. 10.3390/microorganisms8111744.

[3] Calder, P.C. (2013). Feeding the immune system. Proc Nutr Soc 72, 299-309. 10.1017/s0029665113001286.

[4] Brucklacher-Waldert, V., Carr, E.J., Linterman, M.A., and Veldhoen, M. (2014). Cellular Plasticity of CD4+ T Cells in the Intestine. Front Immunol 5, 488. 10.3389/fimmu.2014.00488.

[5] McGhee, J.R., Kunisawa, J., and Kiyono, H. (2007). Gut lymphocyte migration: we are halfway ‚home‘. Trends Immunol 28, 150-153. 10.1016/j.it.2007.02.001.

[6] Albrecht, M., and Arck, P.C. (2020). Vertically Transferred Immunity in Neonates: Mothers, Mechanisms and Mediators. Front Immunol 11, 555. 10.3389/fimmu.2020.00555.

[7] Houghteling, P.D., and Walker, W.A. (2015). Why is initial bacterial colonization of the intestine important to infants‘ and children’s health? J Pediatr Gastroenterol Nutr 60, 294-307. 10.1097/mpg.0000000000000597.

[8] Amenyogbe, N., Kollmann, T.R., and Ben-Othman, R. (2017). Early-Life Host-Microbiome Interphase: The Key Frontier for Immune Development. Front Pediatr 5, 111. 10.3389/fped.2017.00111.

[9] Round, J.L., and Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313-323. 10.1038/nri2515.

[10] Ganal, S.C., Sanos, S.L., Kallfass, C., Oberle, K., Johner, C., Kirschning, C., Lienenklaus, S., Weiss, S., Staeheli, P., Aichele, P., and Diefenbach, A. (2012). Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171-186. 10.1016/j.immuni.2012.05.020.

[11] Bejaoui, S., and Poulsen, M. (2020). The impact of early life antibiotic use on atopic and metabolic disorders: Meta-analyses of recent insights. Evol Med Public Health 2020, 279-289. 10.1093/emph/eoaa039.

[12] Chu, L.M., Rennie, D.C., Kirychuk, S., Cockcroft, D.W., Gordon, J.R., and Lawson, J.A. (2021). Atopy risk among school-aged children in relation to early exposures to a farm environment: A systematic review. Respir Med 186, 106378. 10.1016/j.rmed.2021.106378.

[13] Deckers, J., Lambrecht, B.N., and Hammad, H. (2019). How a farming environment protects from atopy. Curr Opin Immunol 60, 163-169. 10.1016/j.coi.2019.08.001.

[14] Farber, D.L., Netea, M.G., Radbruch, A., Rajewsky, K., and Zinkernagel, R.M. (2016). Immunological memory: lessons from the past and a look to the future. Nat Rev Immunol 16, 124-128. 10.1038/nri.2016.13.

[15] McCoy, K.D., Burkhard, R., and Geuking, M.B. (2019). The microbiome and immune memory formation. Immunol Cell Biol 97, 625-635. 10.1111/imcb.12273.

[16] Zheng, D., Liwinski, T., and Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research 30, 492-506. 10.1038/s41422-020-0332-7.

[17] Takeuchi, T., and Ohno, H. (2021). Reciprocal regulation of IgA and the gut microbiota: a key mutualism in the intestine. Int Immunol 33, 781-786. 10.1093/intimm/dxab049.

[18] Yoo, J.Y., Groer, M., Dutra, S.V.O., Sarkar, A., and McSkimming, D.I. (2020). Gut Microbiota and Immune System Interactions. Microorganisms 8. 10.3390/microorganisms8101587.

[19] Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787. 10.1016/j.cell.2008.05.009.

[20] Omenetti, S., and Pizarro, T.T. (2015). The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol 6, 639. 10.3389/fimmu.2015.00639.

[21] Orihara, K., Nakae, S., Pawankar, R., and Saito, H. (2008). Role of regulatory and proinflammatory T-cell populations in allergic diseases. World Allergy Organ J 1, 9-14. 10.1097/wox.0b013e3181629ae3.

[22] Shekhar, S., and Petersen, F.C. (2020). The Dark Side of Antibiotics: Adverse Effects on the Infant Immune Defense Against Infection. Front Pediatr 8, 544460. 10.3389/fped.2020.544460.

[23] Harper, A., Vijayakumar, V., Ouwehand, A.C., Ter Haar, J., Obis, D., Espadaler, J., Binda, S., Desiraju, S., and Day, R. (2020). Viral Infections, the Microbiome, and Probiotics. Front Cell Infect Microbiol 10, 596166. 10.3389/fcimb.2020.596166.

[24] Belkaid, Y., and Hand, T.W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121-141. 10.1016/j.cell.2014.03.011.

[25] Zhang, S.L., Wang, S.N., and Miao, C.Y. (2017). Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol 8, 1674. 10.3389/fimmu.2017.01674.

[26] Vignesh, R., Swathirajan, C.R., Tun, Z.H., Rameshkumar, M.R., Solomon, S.S., and Balakrishnan, P. (2020). Could Perturbation of Gut Microbiota Possibly Exacerbate the Severity of COVID-19 via Cytokine Storm? Front Immunol 11, 607734. 10.3389/fimmu.2020.607734.

[27] Levy, M., Kolodziejczyk, A.A., Thaiss, C.A., and Elinav, E. (2017). Dysbiosis and the immune system. Nat Rev Immunol 17, 219-232. 10.1038/nri.2017.7.

[28] Life expectancy (from birth) in Germany, from 1875 to 2020. (2024). https://www.statista.com/statistics/1041098/life-expectancy-germany-all-time/.

[29] Chronic Conditions for Older Adults – The Top 10 Most Common Chronic Conditions in Older Adults. (2024). https://www.ncoa.org/article/the-top-10-most-common-chronic-conditions-in-older-adults.

[30] Garmany, A., Yamada, S., and Terzic, A. (2021). Longevity leap: mind the healthspan gap. NPJ Regen Med 6, 57. 10.1038/s41536-021-00169-5.

[31] Lord, J.M. (2013). The effect of ageing of the immune system on vaccination responses. Hum Vaccin Immunother 9, 1364-1367. 10.4161/hv.24696.

[32] Fastame, M.C. (2022). Well-being, food habits, and lifestyle for longevity. Preliminary evidence from the sardinian centenarians and long-lived people of the Blue Zone. Psychol Health Med 27, 728-733. 10.1080/13548506.2022.2038384.

[33] Buettner, D., and Skemp, S. (2016). Blue Zones: Lessons From the World’s Longest Lived. Am J Lifestyle Med 10, 318-321. 10.1177/1559827616637066.

[34] Santoro, A., Bientinesi, E., and Monti, D. (2021). Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 71, 101422. 10.1016/j.arr.2021.101422.

[35] Rodrigues, L.P., Teixeira, V.R., Alencar-Silva, T., Simonassi-Paiva, B., Pereira, R.W., Pogue, R., and Carvalho, J.L. (2021). Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev 59, 9-21. 10.1016/j.cytogfr.2021.01.006.

[36] Corcoran, C., Murphy, C., Culligan, E.P., Walton, J., and Sleator, R.D. (2019). Malnutrition in the elderly. Sci Prog 102, 171-180. 10.1177/0036850419854290.

[37] Ciabattini, A., Nardini, C., Santoro, F., Garagnani, P., Franceschi, C., and Medaglini, D. (2018). Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol 40, 83-94. 10.1016/j.smim.2018.10.010.

[38] Parker, A., Romano, S., Ansorge, R., Aboelnour, A., Le Gall, G., Savva, G.M., Pontifex, M.G., Telatin, A., Baker, D., Jones, E., et al. (2022). Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 10, 68. 10.1186/s40168-022-01243-w.

[39] Fransen, F., van Beek, A.A., Borghuis, T., Aidy, S.E., Hugenholtz, F., van der Gaast-de Jongh, C., Savelkoul, H.F.J., De Jonge, M.I., Boekschoten, M.V., Smidt, H., et al. (2017). Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Front Immunol 8, 1385. 10.3389/fimmu.2017.01385.

[40] Lee, J., Venna, V.R., Durgan, D.J., Shi, H., Hudobenko, J., Putluri, N., Petrosino, J., McCullough, L.D., and Bryan, R.M. (2020). Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance. Gut Microbes 12, 1-14. 10.1080/19490976.2020.1814107.

[41] Boehme, M., Guzzetta, K.E., Bastiaanssen, T.F.S., van de Wouw, M., Moloney, G.M., Gual-Grau, A., Spichak, S., Olavarría-Ramírez, L., Fitzgerald, P., Morillas, E., et al. (2021). Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging 1, 666-676. 10.1038/s43587-021-00093-9.

[42] Bosco, N., and Noti, M. (2021). The aging gut microbiome and its impact on host immunity. Genes Immun 22, 289-303. 10.1038/s41435-021-00126-8.

[43] Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., Kitzman, D.W., Kushugulova, A., Marotta, F., and Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 4, 267-285. 10.3233/nha-170030.

[44] Ragonnaud, E., and Biragyn, A. (2021). Gut microbiota as the key controllers of „healthy“ aging of elderly people. Immun Ageing 18, 2. 10.1186/s12979-020-00213-w.

[1] Britannica, T.E.o.E. (2024). Liver anatomy https://www.britannica.com/science/liver.

[2] Horvatits, T., Tamminga, M., Liu, B., Sebode, M., Carambia, A., Fischer, L., Püschel, K., Huber, S., and Fischer, E.K. (2022). Microplastics detected in cirrhotic liver tissue. EBioMedicine 82, 104147. 10.1016/j.ebiom.2022.104147.

[3] Ohtani, O., and Ohtani, Y. (2008). Lymph Circulation in the Liver. The Anatomical Record 291, 643-652. https://doi.org/10.1002/ar.20681.

[4] Hsu, C.L., and Schnabl, B. (2023). The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 21, 719-733. 10.1038/s41579-023-00904-3.

[5] Racanelli, V., and Rehermann, B. (2006). The liver as an immunological organ. Hepatology 43, S54-62. 10.1002/hep.21060.

[6] Hastings, K.L., Green, M.D., Gao, B., Ganey, P.E., Roth, R.A., and Burleson, G.R. (2020). Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 39, 151-164. 10.1177/1091581819898399.

[7] Godlewska, U., Bulanda, E., and Wypych, T.P. (2022). Bile acids in immunity: Bidirectional mediators between the host and the microbiota. Front Immunol 13, 949033. 10.3389/fimmu.2022.949033.

[8] Drenckhahn, D., and Waschke, J. (2020). Taschenbuch anatomie (Elsevier Health Sciences).

[9] Ay, Ü., Leníček, M., Classen, A., Olde Damink, S.W.M., Bolm, C., and Schaap, F.G. (2022). New Kids on the Block: Bile Salt Conjugates of Microbial Origin. Metabolites 12. 10.3390/metabo12020176.

[10] Kuno, T., Hirayama-Kurogi, M., Ito, S., and Ohtsuki, S. (2018). Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci Rep 8, 1253. 10.1038/s41598-018-19545-1.

[11] Takiishi, T., Fenero, C.I.M., and Câmara, N.O.S. (2017). Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 5, e1373208. 10.1080/21688370.2017.1373208.

[12] Begley, M., Gahan, C.G., and Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiol Rev 29, 625-651. 10.1016/j.femsre.2004.09.003.

[13] Ye, X., Li, H., Anjum, K., Zhong, X., Miao, S., Zheng, G., Liu, W., and Li, L. (2022). Dual Role of Indoles Derived From Intestinal Microbiota on Human Health. Front Immunol 13, 903526. 10.3389/fimmu.2022.903526.

[14] Li, X., Zhang, B., Hu, Y., and Zhao, Y. (2021). New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 12, 769501. 10.3389/fphar.2021.769501.

[15] Spengler, E., and Loomba, R. (2015). The Gut Microbiota, Intestinal Permeability, Bacterial Translocation, and Nonalcoholic Fatty Liver Disease: What Comes First? Cell Mol Gastroenterol Hepatol 1, 129-130. 10.1016/j.jcmgh.2015.01.007.

[16] Gu, W., Hortlik, H., Erasmus, H.-P., Schaaf, L., Zeleke, Y., Uschner, F., Ferstl, P., Schulz, M., Peiffer, K.-H., Queck, A., et al. (2021). Trends and the course of liver cirrhosis and its complications in Germany: Nationwide population-based study (2005 to 2018). The Lancet Regional Health – Europe 12, 100240. 10.1016/j.lanepe.2021.100240.

[17] Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) – April 2022 – AWMF Registration No.: 021-025. (2022). Z Gastroenterol 60, e733-e801. 10.1055/a-1880-2388.

[18] Amendment „Neue Nomenklatur zur MASLD (Metabolic Dysfunction Associated Steatotic Liver Disease; metabolische Dysfunktion assoziierte steatotische Lebererkrankung)“ zur S2k-Leitlinie „Nicht-alkoholische Fettlebererkrankung“ (v.2.0 / April 2022) der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – März 2024 – AWMF Registration No.: 021-025. (2024). AWMF online, 1-65.

[19] Sahu, P., Chhabra, P., and Mehendale, A.M. (2023). A Comprehensive Review on Non-Alcoholic Fatty Liver Disease. Cureus 15, e50159. 10.7759/cureus.50159.

[20] Schwenger, K.J., Clermont-Dejean, N., and Allard, J.P. (2019). The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 1, 214-226. 10.1016/j.jhepr.2019.04.004.

[21] Philips, C.A., Schnabl, B., and Bajaj, J.S. (2022). Gut Microbiome and Alcohol-associated Liver Disease. J Clin Exp Hepatol 12, 1349-1359. 10.1016/j.jceh.2021.12.016.

[22] Albhaisi, S.A.M., Bajaj, J.S., and Sanyal, A.J. (2020). Role of gut microbiota in liver disease. Am J Physiol Gastrointest Liver Physiol 318, G84-g98. 10.1152/ajpgi.00118.2019.

[23] Núñez, F.P., Quera, P.R., and Gomollón, F. (2019). Primary sclerosing cholangitis and inflammatory bowel disease: Intestine-liver interrelation. Gastroenterol Hepatol 42, 316-325. 10.1016/j.gastrohep.2019.02.004.

[24] Trebicka, J., Reiberger, T., and Laleman, W. (2018). Gut-Liver Axis Links Portal Hypertension to Acute-on-Chronic Liver Failure. Visc Med 34, 270-275. 10.1159/000490262.

[25] Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., et al. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59-64. 10.1038/nature13568.

[26] Trivedi, Y., Bolgarina, Z., Desai, H.N., Senaratne, M., Swami, S.S., Aye, S.L., and Mohammed, L. (2023). The Role of Gut Microbiome in Hepatocellular Carcinoma: A Systematic Review. Cureus 15, e43862. 10.7759/cureus.43862.

[27] Moreno-Gonzalez, M., and Beraza, N. (2021). The Role of the Microbiome in Liver Cancer. Cancers (Basel) 13. 10.3390/cancers13102330.

[28] Maestri, M., Santopaolo, F., Pompili, M., Gasbarrini, A., and Ponziani, F.R. (2023). Gut microbiota modulation in patients with non-alcoholic fatty liver disease: Effects of current treatments and future strategies. Front Nutr 10, 1110536. 10.3389/fnut.2023.1110536.

[29] Maslennikov, R., Ivashkin, V., Efremova, I., Poluektova, E., and Shirokova, E. (2021). Probiotics in hepatology: An update. World J Hepatol 13, 1154-1166. 10.4254/wjh.v13.i9.1154.

[1] Moeser, A., Lerche, M., Wirtz, H., and Stallmach, A. (2018). [Aspects of pulmonary involvement in inflammatory bowel disease]. Internist (Berl) 59, 876-885. 10.1007/s00108-018-0473-7.

[2] Budden, K.F., Gellatly, S.L., Wood, D.L.A., Cooper, M.A., Morrison, M., Hugenholtz, P., and Hansbro, P.M. (2017). Emerging pathogenic links between microbiota and the gut–lung axis. Nature Reviews Microbiology 15, 55-63. 10.1038/nrmicro.2016.142.

[3] Dang, A.T., and Marsland, B.J. (2019). Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12, 843-850. 10.1038/s41385-019-0160-6.

[4] Tulic, M.K., Piche, T., and Verhasselt, V. (2016). Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy 46, 519-528. 10.1111/cea.12723.

[5] Cruz, C.S., Ricci, M.F., and Vieira, A.T. (2021). Gut Microbiota Modulation as a Potential Target for the Treatment of Lung Infections. Front Pharmacol 12, 724033. 10.3389/fphar.2021.724033.

[6] Wypych, T.P., Wickramasinghe, L.C., and Marsland, B.J. (2019). The influence of the microbiome on respiratory health. Nat Immunol 20, 1279-1290. 10.1038/s41590-019-0451-9.

[7] Borbet, T.C., Pawline, M.B., Zhang, X., Wipperman, M.F., Reuter, S., Maher, T., Li, J., Iizumi, T., Gao, Z., Daniele, M., et al. (2022). Influence of the early-life gut microbiota on the immune responses to an inhaled allergen. Mucosal Immunol 15, 1000-1011. 10.1038/s41385-022-00544-5.

[8] Marsland, B.J., Trompette, A., and Gollwitzer, E.S. (2015). The Gut-Lung Axis in Respiratory Disease. Ann Am Thorac Soc 12 Suppl 2, S150-156. 10.1513/AnnalsATS.201503-133AW.

[9] Segata, N., Haake, S.K., Mannon, P., Lemon, K.P., Waldron, L., Gevers, D., Huttenhower, C., and Izard, J. (2012). Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13, R42. 10.1186/gb-2012-13-6-r42.

[10] Leitao Filho, F.S., Monica Peters, C., Sheel, A.W., Yang, J., Nislow, C., Lam, S., Leung, J.M., and Sin, D.D. (2023). Characterization of the Lower Airways and Oral Microbiota in Healthy Young Persons in the Community. Biomedicines 11. 10.3390/biomedicines11030841.

[11] Saint-Criq, V., Lugo-Villarino, G., and Thomas, M. (2021). Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev 66, 101235. 10.1016/j.arr.2020.101235.

[12] O’Dwyer, D.N., Dickson, R.P., and Moore, B.B. (2016). The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. J Immunol 196, 4839-4847. 10.4049/jimmunol.1600279.

[13] Debnath, N., Kumar, A., and Yadav, A.K. (2022). Probiotics as a biotherapeutics for the management and prevention of respiratory tract diseases. Microbiol Immunol 66, 277-291. 10.1111/1348-0421.12980.

[14] Eccles, R. (2023). Common cold. Front Allergy 4, 1224988. 10.3389/falgy.2023.1224988.

[15] Vissers, M., de Groot, R., and Ferwerda, G. (2014). Severe viral respiratory infections: are bugs bugging? Mucosal Immunology 7, 227-238. 10.1038/mi.2013.93.

[16] Groff, A., Kavanaugh, M., Ramgobin, D., McClafferty, B., Aggarwal, C.S., Golamari, R., and Jain, R. (2021). Gastrointestinal Manifestations of COVID-19: A Review of What We Know. Ochsner Journal 21, 177-180. 10.31486/toj.20.0086.

[17] Wang, M., Zhang, Y., Li, C., Chang, W., and Zhang, L. (2023). The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. Front Immunol 14, 1180336. 10.3389/fimmu.2023.1180336.

[18] Wang, H., Wang, H., Sun, Y., Ren, Z., Zhu, W., Li, A., and Cui, G. (2021). Potential Associations Between Microbiome and COVID-19. Front Med (Lausanne) 8, 785496. 10.3389/fmed.2021.785496.

[19] Branco, A.C.C.C., Sato, M.N., and Alberca, R.W. (2020). The possible dual role of the ACE2 receptor in asthma and coronavirus (SARS-CoV2) infection. Frontiers in cellular and infection microbiology 10, 550571.

[20] Patankar, J.V., Chiriac, M.T., Lehmann, M., Kühl, A.A., Atreya, R., Becker, C., Gonzalez-Acera, M., Schmitt, H., Gamez-Belmonte, R., Mahapatro, M., et al. (2021). Severe Acute Respiratory Syndrome Coronavirus 2 Attachment Receptor Angiotensin-Converting Enzyme 2 Is Decreased in Crohn’s Disease and Regulated By Microbial and Inflammatory Signaling. Gastroenterology 160, 925-928.e924. https://doi.org/10.1053/j.gastro.2020.10.021.

[21] He, L.H., Ren, L.F., Li, J.F., Wu, Y.N., Li, X., and Zhang, L. (2020). Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Front Microbiol 11, 1388. 10.3389/fmicb.2020.01388.

[22] Konturek, P.C. (2021). [How does COVID-19 affect intestinal microbiota?]. MMW Fortschr Med 163, 17-20. 10.1007/s15006-021-0200-5.

[23] Vignesh, R., Swathirajan, C.R., Tun, Z.H., Rameshkumar, M.R., Solomon, S.S., and Balakrishnan, P. (2020). Could Perturbation of Gut Microbiota Possibly Exacerbate the Severity of COVID-19 via Cytokine Storm? Front Immunol 11, 607734. 10.3389/fimmu.2020.607734.

[24] Hörster, R., and Rupp, J. (2020). [The new comprehension of pulmonary infections]. Pneumologe (Berl) 17, 105-112. 10.1007/s10405-019-00291-8.

[25] Clarke, T.B., Davis, K.M., Lysenko, E.S., Zhou, A.Y., Yu, Y., and Weiser, J.N. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine 16, 228-231. 10.1038/nm.2087.

[26] Bacci, G., Rossi, A., Armanini, F., Cangioli, L., De Fino, I., Segata, N., Mengoni, A., Bragonzi, A., and Bevivino, A. (2021). Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis. Int J Mol Sci 22. 10.3390/ijms222212169.

[27] Huang, Y.J., and Boushey, H.A. (2015). The microbiome in asthma. Journal of Allergy and Clinical Immunology 135, 25-30.

[28] Barcik, W., Boutin, R.C.T., Sokolowska, M., and Finlay, B.B. (2020). The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 52, 241-255. 10.1016/j.immuni.2020.01.007.

[29] Depner, M., Taft, D.H., Kirjavainen, P.V., Kalanetra, K.M., Karvonen, A.M., Peschel, S., Schmausser-Hechfellner, E., Roduit, C., Frei, R., Lauener, R., et al. (2020). Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med 26, 1766-1775. 10.1038/s41591-020-1095-x.

[30] Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P., Gill, H.S., McGuirk, P., van Eden, W., Versalovic, J., Weinstock, J.V., and Rook, G.A.W. (2006). Mechanisms of Disease: the hygiene hypothesis revisited. Nature Clinical Practice Gastroenterology & Hepatology 3, 275-284. 10.1038/ncpgasthep0471.

[31] Ege, M.J. (2017). The Hygiene Hypothesis in the Age of the Microbiome. Ann Am Thorac Soc 14, S348-s353. 10.1513/AnnalsATS.201702-139AW.

[32] Turkalj, M., Drkulec, V., Haider, S., Plavec, D., Banić, I., Malev, O., Erceg, D., Woodcock, A., Nogalo, B., and Custovic, A. (2020). Association of bacterial load in drinking water and allergic diseases in childhood. Clin Exp Allergy 50, 733-740. 10.1111/cea.13605.

[33] Bergmann, K.C., Heinrich, J., and Niemann, H. (2016). Current status of allergy prevalence in Germany: Position paper of the Environmental Medicine Commission of the Robert Koch Institute. Allergo J Int 25, 6-10. 10.1007/s40629-016-0092-6.

[34] Stockert, K. (2020). Allergie, Mikrobiom und weitere epigenetische Faktoren. AllergiepräventionModerne Strategien der Allergieforschung im Dialog mit der TCM, 47-118.

[35] Valverde-Molina, J., and García-Marcos, L. (2023). Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 15. 10.3390/nu15030486.

[36] Karakasidis, E., Kotsiou, O.S., and Gourgoulianis, K.I. (2023). Lung and Gut Microbiome in COPD. Journal of Personalized Medicine 13, 804.

[37] S3-Leitlinie Nationale VersorgungsLeitlinie COPD der Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV) & Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften – Juni 2021 – AWMF Registration No.: nvl-003. (2021). AWMF online, 1-110.

[38] Greulich, T., Weist, B.J.D., Koczulla, A.R., Janciauskiene, S., Klemmer, A., Lux, W., Alter, P., and Vogelmeier, C.F. (2017). Prevalence of comorbidities in COPD patients by disease severity in a German population. Respir Med 132, 132-138. 10.1016/j.rmed.2017.10.007.

[39] Engel, M., Endesfelder, D., Schloter-Hai, B., Kublik, S., Granitsiotis, M.S., Boschetto, P., Stendardo, M., Barta, I., Dome, B., Deleuze, J.-F., et al. (2017). Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLOS ONE 12, e0180859. 10.1371/journal.pone.0180859.

[40] Yang, L., Li, N., Yi, X., and Wang, Z. (2023). The translational potential of the lung microbiome as a biomarker and a therapeutic target for chronic obstructive pulmonary disease. Interdisciplinary Medicine 1, e20230023. https://doi.org/10.1002/INMD.20230023.

[41] Ekbom, A., Brandt, L., Granath, F., Löfdahl, C.G., and Egesten, A. (2008). Increased risk of both ulcerative colitis and Crohn’s disease in a population suffering from COPD. Lung 186, 167-172. 10.1007/s00408-008-9080-z.

[42] Heijink, I.H., Brandenburg, S.M., Postma, D.S., and van Oosterhout, A.J. (2012). Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. Eur Respir J 39, 419-428. 10.1183/09031936.00193810.

[43] Song, W., Yue, Y., and Zhang, Q. (2023). Imbalance of gut microbiota is involved in the development of chronic obstructive pulmonary disease: A review. Biomed Pharmacother 165, 115150. 10.1016/j.biopha.2023.115150.

[1] Britannica, T.E.o.E. (2024). Tumour pathology. https://www.britannica.com/science/tumor.

[2] Internet-Redaktion des Krebsinformationsdienstes des Deutsches Krebsforschungszentrum, D. (2021). Wie entsteht Krebs? https://www.krebsinformationsdienst.de/krebsentstehung#c8078.

[3] Tanaka, Y., Shimizu, S., Shirotani, M., Yorozu, K., Kitamura, K., Oehorumu, M., Kawai, Y., and Fukuzawa, Y. (2021). Nutrition and Cancer Risk from the Viewpoint of the Intestinal Microbiome. Nutrients 13. 10.3390/nu13103326.

[4] Ames, B.N., Gold, L.S., and Willett, W.C. (1995). The causes and prevention of cancer. Proceedings of the National Academy of Sciences 92, 5258-5265.

[5] Zitvogel, L., Daillère, R., Roberti, M.P., Routy, B., and Kroemer, G. (2017). Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15, 465-478. 10.1038/nrmicro.2017.44.

[6] Hiam-Galvez, K.J., Allen, B.M., and Spitzer, M.H. (2021). Systemic immunity in cancer. Nature Reviews Cancer 21, 345-359. 10.1038/s41568-021-00347-z.

[7] Kim, S.K., and Cho, S.W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 13, 868695. 10.3389/fphar.2022.868695.

[8] Helmink, B.A., Khan, M.A.W., Hermann, A., Gopalakrishnan, V., and Wargo, J.A. (2019). The microbiome, cancer, and cancer therapy. Nature Medicine 25, 377-388. 10.1038/s41591-019-0377-7.

[9] Kelly, C.J., Zheng, L., Campbell, E.L., Saeedi, B., Scholz, C.C., Bayless, A.J., Wilson, K.E., Glover, L.E., Kominsky, D.J., Magnuson, A., et al. (2015). Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 17, 662-671. 10.1016/j.chom.2015.03.005.

[10] Son, M.Y., and Cho, H.S. (2023). Anticancer Effects of Gut Microbiota-Derived Short-Chain Fatty Acids in Cancers. J Microbiol Biotechnol 33, 849-856. 10.4014/jmb.2301.01031.

[11] Feitelson, M.A., Arzumanyan, A., Medhat, A., and Spector, I. (2023). Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 42, 677-698. 10.1007/s10555-023-10117-y.

[12] Liu, X., Cheng, Y., Zang, D., Zhang, M., Li, X., Liu, D., Gao, B., Zhou, H., Sun, J., Han, X., et al. (2021). The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol 11, 720842. 10.3389/fonc.2021.720842.

[13] Jaye, K., Li, C.G., and Bhuyan, D.J. (2021). The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses. Crit Rev Oncol Hematol 165, 103429. 10.1016/j.critrevonc.2021.103429.

[14] Messaritakis, I., Vogiatzoglou, K., Tsantaki, K., Ntretaki, A., Sfakianaki, M., Koulouridi, A., Tsiaoussis, J., Mavroudis, D., and Souglakos, J. (2020). The Prognostic Value of the Detection of Microbial Translocation in the Blood of Colorectal Cancer Patients. Cancers (Basel) 12. 10.3390/cancers12041058.

[15] Xavier, J.B., Young, V.B., Skufca, J., Ginty, F., Testerman, T., Pearson, A.T., Macklin, P., Mitchell, A., Shmulevich, I., Xie, L., et al. (2020). The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View. Trends Cancer 6, 192-204. 10.1016/j.trecan.2020.01.004.

[16] Huycke, M.M., Abrams, V., and Moore, D.R. (2002). Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 23, 529-536. 10.1093/carcin/23.3.529.

[17] Pernigoni, N., Zagato, E., Calcinotto, A., Troiani, M., Mestre, R.P., Calì, B., Attanasio, G., Troisi, J., Minini, M., Mosole, S., et al. (2021). Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216-224. doi:10.1126/science.abf8403.

[18] Francescone, R., Hou, V., and Grivennikov, S.I. (2014). Microbiome, inflammation, and cancer. Cancer J 20, 181-189. 10.1097/ppo.0000000000000048.

[19] Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., Rotter-Maskowitz, A., Weiser, R., Mallel, G., Gigi, E., et al. (2020). The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973-980. 10.1126/science.aay9189.

[20] Dohlman, A.B., Arguijo Mendoza, D., Ding, S., Gao, M., Dressman, H., Iliev, I.D., Lipkin, S.M., and Shen, X. (2021). The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe 29, 281-298.e285. 10.1016/j.chom.2020.12.001.

[21] Wong, S.H., and Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 16, 690-704. 10.1038/s41575-019-0209-8.

[22] Liu, T., Song, X., Khan, S., Li, Y., Guo, Z., Li, C., Wang, S., Dong, W., Liu, W., Wang, B., and Cao, H. (2020). The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. International Journal of Cancer 146, 1780-1790. https://doi.org/10.1002/ijc.32563.

[23] Tjalsma, H., Boleij, A., Marchesi, J.R., and Dutilh, B.E. (2012). A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nature Reviews Microbiology 10, 575-582. 10.1038/nrmicro2819.

[24] Avril, M., and DePaolo, R.W. (2021). “Driver-passenger” bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes 13, 1941710. 10.1080/19490976.2021.1941710.

[25] Gyémánt, N., Molnár, A., Spengler, G., Mándi, Y., Szabó, M., and Molnar, J. (2004). Bacterial models for tumor development. Acta microbiologica et immunologica Hungarica 51, 321-332.

[26] Salachan, P.V., and Sørensen, K.D. (2022). Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. Journal of Experimental & Clinical Cancer Research 41, 31. 10.1186/s13046-021-02196-y.

[27] Rebersek, M. (2021). Gut microbiome and its role in colorectal cancer. BMC Cancer 21, 1325. 10.1186/s12885-021-09054-2.

[28] Parhi, L., Alon-Maimon, T., Sol, A., Nejman, D., Shhadeh, A., Fainsod-Levi, T., Yajuk, O., Isaacson, B., Abed, J., and Maalouf, N. (2020). Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nature communications 11, 3259.

[29] Perillo, F., Amoroso, C., Strati, F., Giuffrè, M.R., Díaz-Basabe, A., Lattanzi, G., and Facciotti, F. (2020). Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. International Journal of Molecular Sciences 21, 5389.

[30] Derosa, L., Hellmann, M.D., Spaziano, M., Halpenny, D., Fidelle, M., Rizvi, H., Long, N., Plodkowski, A.J., Arbour, K.C., Chaft, J.E., et al. (2018). Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 29, 1437-1444. 10.1093/annonc/mdy103.

[31] Bullman, S., Pedamallu, C.S., Sicinska, E., Clancy, T.E., Zhang, X., Cai, D., Neuberg, D., Huang, K., Guevara, F., Nelson, T., et al. (2017). Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443-1448. 10.1126/science.aal5240.

[32] Banerjee, S., Alwine, J.C., Wei, Z., Tian, T., Shih, N., Sperling, C., Guzzo, T., Feldman, M.D., and Robertson, E.S. (2019). Microbiome signatures in prostate cancer. Carcinogenesis 40, 749-764. 10.1093/carcin/bgz008.

[33] Liss, M.A., White, J.R., Goros, M., Gelfond, J., Leach, R., Johnson-Pais, T., Lai, Z., Rourke, E., Basler, J., Ankerst, D., and Shah, D.P. (2018). Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur Urol 74, 575-582. 10.1016/j.eururo.2018.06.033.

[34] Golombos, D.M., Ayangbesan, A., O’Malley, P., Lewicki, P., Barlow, L., Barbieri, C.E., Chan, C., DuLong, C., Abu-Ali, G., Huttenhower, C., and Scherr, D.S. (2018). The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. Urology 111, 122-128. https://doi.org/10.1016/j.urology.2017.08.039.

[35] Guo, W., Zhang, Y., Guo, S., Mei, Z., Liao, H., Dong, H., Wu, K., Ye, H., Zhang, Y., Zhu, Y., et al. (2021). Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Communications Biology 4, 1019. 10.1038/s42003-021-02557-5.

[36] Moehler, M., Al-Batran, S.-E., Andus, T., Arends, J., Arnold, D., Baretton, G., Bornschein, J., Budach, W., Daum, S., and Dietrich, C. (2019). S3-Leitlinie Magenkarzinom–Diagnostik und Therapie der Adenokarzinome des Magens und des ösophagogastralen Übergangs–Langversion 2.0–August 2019. AWMF-Registernummer: 032/009OL. Zeitschrift für Gastroenterologie 57, 1517-1632.

[37] Stephanie, E.M.-G., Eduardo, M.-V., Germán Rubén, A.-G.r., Yolanda, L.-V., and Gonzalo, C.-R. (2013). The Role of CagA Protein Signaling in Gastric Carcinogenesis — CagA Signaling in Gastric Carcinogenesis. In Current Topics in Gastritis, M. Gyula, ed. (IntechOpen). 10.5772/53136.

[38] Zarzecka, U., Modrak-Wójcik, A., Figaj, D., Apanowicz, M., Lesner, A., Bzowska, A., Lipinska, B., Zawilak-Pawlik, A., Backert, S., and Skorko-Glonek, J. (2019). Properties of the HtrA Protease From Bacterium Helicobacter pylori Whose Activity Is Indispensable for Growth Under Stress Conditions. Front Microbiol 10, 961. 10.3389/fmicb.2019.00961.

[39] Klymiuk, I., Bilgilier, C., Stadlmann, A., Thannesberger, J., Kastner, M.T., Högenauer, C., Püspök, A., Biowski-Frotz, S., Schrutka-Kölbl, C., Thallinger, G.G., and Steininger, C. (2017). The Human Gastric Microbiome Is Predicated upon Infection with Helicobacter pylori. Front Microbiol 8, 2508. 10.3389/fmicb.2017.02508.

[40] Yamamura, K., Baba, Y., Miyake, K., Nakamura, K., Shigaki, H., Mima, K., Kurashige, J., Ishimoto, T., Iwatsuki, M., Sakamoto, Y., et al. (2017). Fusobacterium nucleatum in gastroenterological cancer: Evaluation of measurement methods using quantitative polymerase chain reaction and a literature review. Oncol Lett 14, 6373-6378. 10.3892/ol.2017.7001.

[41] Shiravand, Y., Khodadadi, F., Kashani, S.M.A., Hosseini-Fard, S.R., Hosseini, S., Sadeghirad, H., Ladwa, R., O’Byrne, K., and Kulasinghe, A. (2022). Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 29, 3044-3060. 10.3390/curroncol29050247.

[42] Gunjur, A., Shao, Y., Rozday, T., Klein, O., Mu, A., Haak, B.W., Markman, B., Kee, D., Carlino, M.S., Underhill, C., et al. (2024). A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat Med 30, 797-809. 10.1038/s41591-024-02823-z.

[43] Hwang, S.W., Kim, M.K., and Kweon, M.N. (2023). Gut microbiome on immune checkpoint inhibitor therapy and consequent immune-related colitis: a review. Intest Res 21, 433-442. 10.5217/ir.2023.00019.

[44] Björk, J.R., Bolte, L.A., Maltez Thomas, A., Lee, K.A., Rossi, N., Wind, T.T., Smit, L.M., Armanini, F., Asnicar, F., Blanco-Miguez, A., et al. (2024). Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat Med 30, 785-796. 10.1038/s41591-024-02803-3.

[45] Li, L., and McAllister, F. (2022). Too much water drowned the miller: Akkermansia determines immunotherapy responses. Cell Rep Med 3, 100642. 10.1016/j.xcrm.2022.100642.

[46] Crespin, A., Le Bescop, C., de Gunzburg, J., Vitry, F., Zalcman, G., Cervesi, J., and Bandinelli, P.A. (2023). A systematic review and meta-analysis evaluating the impact of antibiotic use on the clinical outcomes of cancer patients treated with immune checkpoint inhibitors. Front Oncol 13, 1075593. 10.3389/fonc.2023.1075593.

[47] Mohamed, A., Menon, H., Chulkina, M., Yee, N.S., and Pinchuk, I.V. (2021). Drug–Microbiota Interaction in Colon Cancer Therapy: Impact of Antibiotics. Biomedicines 9, 259.

[48] Geller, L.T., Barzily-Rokni, M., Danino, T., Jonas, O.H., Shental, N., Nejman, D., Gavert, N., Zwang, Y., Cooper, Z.A., Shee, K., et al. (2017). Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156-1160. 10.1126/science.aah5043.

[49] Heshiki, Y., Vazquez-Uribe, R., Li, J., Ni, Y., Quainoo, S., Imamovic, L., Li, J., Sørensen, M., Chow, B.K.C., Weiss, G.J., et al. (2020). Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome 8, 28. 10.1186/s40168-020-00811-2.

[50] Papanicolas, L.E., Gordon, D.L., Wesselingh, S.L., and Rogers, G.B. (2018). Not Just Antibiotics: Is Cancer Chemotherapy Driving Antimicrobial Resistance? Trends Microbiol 26, 393-400. 10.1016/j.tim.2017.10.009.

[51] Yu, Z.-K., Xie, R.-L., You, R., Liu, Y.-P., Chen, X.-Y., Chen, M.-Y., and Huang, P.-Y. (2021). The role of the bacterial microbiome in the treatment of cancer. BMC Cancer 21, 934. 10.1186/s12885-021-08664-0.

[1] Gallo, R.L. (2017). Human skin is the largest epithelial surface for interaction with microbes. Journal of Investigative Dermatology 137, 1213-1214.

[2] Eyerich, S., Eyerich, K., Traidl-Hoffmann, C., and Biedermann, T. (2018). Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol 39, 315-327. 10.1016/j.it.2018.02.004.

[3] Lunjani, N., Ahearn-Ford, S., Dube, F.S., Hlela, C., and O’Mahony, L. (2021). Mechanisms of microbe-immune system dialogue within the skin. Genes & Immunity 22, 276-288. 10.1038/s41435-021-00133-9.

[4] Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., Agata, T., and Mizunoe, Y. (2010). Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346-349. 10.1038/nature09074.

[5] Nakatsuji, T., Chen, T.H., Narala, S., Chun, K.A., Two, A.M., Yun, T., Shafiq, F., Kotol, P.F., Bouslimani, A., Melnik, A.V., et al. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9. 10.1126/scitranslmed.aah4680.

[6] Schmid-Wendtner, M.H., and Korting, H.C. (2006). The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19, 296-302. 10.1159/000094670.

[7] Fluhr, J.W., Kao, J., Jain, M., Ahn, S.K., Feingold, K.R., and Elias, P.M. (2001). Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 117, 44-51. 10.1046/j.0022-202x.2001.01399.x.

[8] Heuss, E. (1892). Die Reaktion des schweisses beim gesunden menschen (Voss).

[9] Schade, H., and Marchionini, A. (1928). Der säuremantel der haut (nach gaskettenmessungen). Klinische Wochenschrift 7, 12-14.

[10] Dykes, P. (1998). Surfactants and the skin. Int J Cosmet Sci 20, 53-61. 10.1046/j.1467-2494.1998.171735.x.

[11] Staudinger, T., Pipal, A., and Redl, B. (2011). Molecular analysis of the prevalent microbiota of human male and female forehead skin compared to forearm skin and the influence of make-up. J Appl Microbiol 110, 1381-1389. 10.1111/j.1365-2672.2011.04991.x.

[12] Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J., Wałecka-Zacharska, E., Radtke, L., and Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 9. 10.3390/microorganisms9030543.

[13] Lukić, M., Pantelić, I., and Savić, S.D. (2021). Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 8, 69.

[14] Baranda, L., González-Amaro, R., Torres-Alvarez, B., Alvarez, C., and Ramírez, V. (2002). Correlation between pH and irritant effect of cleansers marketed for dry skin. Int J Dermatol 41, 494-499. 10.1046/j.1365-4362.2002.01555.x.

[15] Raab, W., and Kindl, U. (2012). Pflegekosmetik: ein Leitfaden; mit 70 Tabellen (Wiss. Verlag-Ges.).

[16] De Pessemier, B., Grine, L., Debaere, M., Maes, A., Paetzold, B., and Callewaert, C. (2021). Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 9. 10.3390/microorganisms9020353.

[17] Di Domenico, E.G., Cavallo, I., Capitanio, B., Ascenzioni, F., Pimpinelli, F., Morrone, A., and Ensoli, F. (2019). Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms 7. 10.3390/microorganisms7090301.

[18] Weidinger, S., Beck, L.A., Bieber, T., Kabashima, K., and Irvine, A.D. (2018). Atopic dermatitis. Nature Reviews Disease Primers 4, 1. 10.1038/s41572-018-0001-z.

[19] Ogawa, E., Sato, Y., Minagawa, A., and Okuyama, R. (2018). Pathogenesis of psoriasis and development of treatment. J Dermatol 45, 264-272. 10.1111/1346-8138.14139.

[20] Arakawa, A., Siewert, K., Stöhr, J., Besgen, P., Kim, S.M., Rühl, G., Nickel, J., Vollmer, S., Thomas, P., Krebs, S., et al. (2015). Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 212, 2203-2212. 10.1084/jem.20151093.

[21] Crow, J.M. (2012). Psoriasis uncovered. Nature 492, S50-S51. 10.1038/492S50a.

[22] Kierasińska, M., and Donskow-Łysoniewska, K. (2021). Both the microbiome and the macrobiome can influence immune responsiveness in psoriasis. Cent Eur J Immunol 46, 502-508. 10.5114/ceji.2021.110314.

[23] Yan, D., Issa, N., Afifi, L., Jeon, C., Chang, H.W., and Liao, W. (2017). The Role of the Skin and Gut Microbiome in Psoriatic Disease. Curr Dermatol Rep 6, 94-103. 10.1007/s13671-017-0178-5.

[24] Kuchner, M., Nemmer, J.M., Werfel, T., and Homey, B. (2021). [Dysbalance between the immune system and skin microbiome in chronic inflammatory dermatoses]. Hautarzt 72, 570-577. 10.1007/s00105-021-04832-2.

[25] Dréno, B., Dagnelie, M.A., Khammari, A., and Corvec, S. (2020). The Skin Microbiome: A New Actor in Inflammatory Acne. Am J Clin Dermatol 21, 18-24. 10.1007/s40257-020-00531-1.

[26] Brandwein, M., Steinberg, D., and Meshner, S. (2016). Microbial biofilms and the human skin microbiome. npj Biofilms and Microbiomes 2. 10.1038/s41522-016-0004-z.

[27] Byrd, A.L., Belkaid, Y., and Segre, J.A. (2018). The human skin microbiome. Nat Rev Microbiol 16, 143-155. 10.1038/nrmicro.2017.157.

[28] Loesche, M., Gardner, S.E., Kalan, L., Horwinski, J., Zheng, Q., Hodkinson, B.P., Tyldsley, A.S., Franciscus, C.L., Hillis, S.L., Mehta, S., et al. (2017). Temporal Stability in Chronic Wound Microbiota Is Associated With Poor Healing. J Invest Dermatol 137, 237-244. 10.1016/j.jid.2016.08.009.

[29] Wang, X., Li, Y., Wu, L., Xiao, S., Ji, Y., Tan, Y., Jiang, C., and Zhang, G. (2021). Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 137, 111065. 10.1016/j.biopha.2020.111065.

[30] Thye, A.Y.-K., Bah, Y.-R., Law, J.W.-F., Tan, L.T.-H., He, Y.-W., Wong, S.-H., Thurairajasingam, S., Chan, K.-G., Lee, L.-H., and Letchumanan, V. (2022). Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 10, 1037.

[31] Su, G., Ko, C., Bercík, P., Falck-Ytter, Y., Sultan, S., Weizman, A., and Morgan, R. (2020). AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology 159. 10.1053/j.gastro.2020.05.059.

[32] Hülpüsch, C., and Reiger, M. (2021). [The skin microbiome-useful for diagnosis and therapy?]. Hautarzt 72, 579-585. 10.1007/s00105-021-04830-4.

[1] Schmidt, R.F. (2013). Grundriß der Neurophysiologie (Springer-Verlag).

[2] Mark F. Bear, B.W.C., Michael A. Paradiso. (2018). Neurowissenschaften Ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie, 4 Edition (Springer Spektrum Berlin). https://doi.org/10.1007/978-3-662-57263-4.

[3] Schmidt, R.F. (1971). Die antagonistische Wirkung von Sympathikus und Parasympathikus auf die vegetativen Effektoren. In Neurophysiologie programmiert, R.F. Schmidt, ed. (Springer Berlin Heidelberg), pp. 375-384. 10.1007/978-3-642-65212-7_35.

[4] Annahazi, A., and Schemann, M. (2020). The enteric nervous system: “A little brain in the gut”. Neuroforum 26, 31-42. doi:10.1515/nf-2019-0027.

[5] Bonaz, B. (2010). Brain-gut interactions. La Revue de Medecine Interne 31, 581-585.

[6] Bonaz, B., Bazin, T., and Pellissier, S. (2018). The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience 12. 10.3389/fnins.2018.00049.

[7] Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 9, 44. 10.3389/fpsyt.2018.00044.

[8] Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28, 203-209.

[9] Akram, N., Faisal, Z., Irfan, R., Shah, Y.A., Batool, S.A., Zahid, T., Zulfiqar, A., Fatima, A., Jahan, Q., Tariq, H., et al. (2024). Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 12, 694-706. 10.1002/fsn3.3826.

[10] Kim, C.-S. (2024). Roles of Diet-Associated Gut Microbial Metabolites on Brain Health: Cell-to-Cell Interactions between Gut Bacteria and the Central Nervous System. Advances in Nutrition 15, 100136. https://doi.org/10.1016/j.advnut.2023.10.008.

[11] Daneman, R., and Prat, A. (2015). The blood-brain barrier. Cold Spring Harb Perspect Biol 7, a020412. 10.1101/cshperspect.a020412.

[12] Parker, A., Fonseca, S., and Carding, S.R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 11, 135-157. 10.1080/19490976.2019.1638722.

[13] Nesci, A., Carnuccio, C., Ruggieri, V., D’Alessandro, A., Di Giorgio, A., Santoro, L., Gasbarrini, A., Santoliquido, A., and Ponziani, F.R. (2023). Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 24. 10.3390/ijms24109087.

[14] Cryan, J.F., and Dinan, T.G. (2015). Microbiota and neuroimmune signalling—Metchnikoff to microglia. Nature Reviews Gastroenterology & Hepatology 12, 494-496. 10.1038/nrgastro.2015.127.

[15] Erny, D., Hrabě de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18, 965-977. 10.1038/nn.4030.

[16] Morais, L.H., Schreiber, H.L.t., and Mazmanian, S.K. (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19, 241-255. 10.1038/s41579-020-00460-0.

[17] Pennisi, E. (2020). Meet the psychobiome. Science 368, 570-573. 10.1126/science.368.6491.570.

[18] Appleton, J. (2018). The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr Med (Encinitas) 17, 28-32.

[19] Frahm, C., and Witte, O.W. (2019). Mikrobiom und neurodegenerative Erkrankungen. Der Gastroenterologe 14, 166-171. 10.1007/s11377-019-0345-2.

[20] de Kloet, E.R., Joëls, M., and Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463-475. 10.1038/nrn1683.

[21] Molina-Torres, G., Rodriguez-Arrastia, M., Roman, P., Sanchez-Labraca, N., and Cardona, D. (2019). Stress and the gut microbiota-brain axis. Behavioural pharmacology 30, 187-200.

[22] Won, E., and Kim, Y.K. (2016). Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol 14, 665-673. 10.2174/1570159×14666151208113006.

[23] Bienertova‐Vasku, J., Lenart, P., and Scheringer, M. (2020). Eustress and distress: neither good nor bad, but rather the same? BioEssays 42, 1900238.

[24] Werbner, M., Barsheshet, Y., Werbner, N., Zigdon, M., Averbuch, I., Ziv, O., Brant, B., Elliot, E., Gelberg, S., Titelbaum, M., et al. (2019). Social-Stress-Responsive Microbiota Induces Stimulation of Self-Reactive Effector T Helper Cells. mSystems 4. 10.1128/mSystems.00292-18.

[25] Gao, X., Cao, Q., Cheng, Y., Zhao, D., Wang, Z., Yang, H., Wu, Q., You, L., Wang, Y., Lin, Y., et al. (2018). Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proceedings of the National Academy of Sciences 115, E2960-E2969. doi:10.1073/pnas.1720696115.

[26] Berger, M., and Rintelen, H. (2018). Psychische Erkrankungen: Klinik und Therapie-enhanced ebook (Elsevier Health Sciences).

[27] Baade, M. (2008). Depression: Ursachen, Zusammenhänge und Veränderungsmöglichkeiten (diplom. de).

[28] Pan, J.-X., Xia, J.-J., Deng, F.-L., Liang, W.-W., Wu, J., Yin, B.-M., Dong, M.-X., Chen, J.-J., Ye, F., Wang, H.-Y., et al. (2018). Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Translational Psychiatry 8, 130. 10.1038/s41398-018-0183-x.

[29] Flux, M.C., and Lowry, C.A. (2020). Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 135, 104578. 10.1016/j.nbd.2019.104578.

[30] Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21, 786-796. 10.1038/mp.2016.44.

[31] Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264-276. 10.1016/j.cell.2015.02.047.

[32] Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity 48, 186-194. https://doi.org/10.1016/j.bbi.2015.03.016.

[33] Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E.F., Wang, J., Tito, R.Y., Schiweck, C., Kurilshikov, A., Joossens, M., Wijmenga, C., et al. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology 4, 623-632. 10.1038/s41564-018-0337-x.

[34] Links between gut microbes and depression strengthened. (2019). Nature 566, 7. 10.1038/d41586-019-00483-5.

[35] S2k-Leitlinie Parkinson-Krankheit der Kommission Leitlinien der Deutschen Gesellschaft für Neurologie. (2023). AWMF online. https://register.awmf.org/assets/guidelines/030-010l_Parkinson_Krankheit_2023-11_1.pdf.

[36] Bridi, J.C., and Hirth, F. (2018). Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson’s Disease. Frontiers in Neuroscience 12. 10.3389/fnins.2018.00080.

[37] Devi, D., Biswas, S., and Purkayastha, B. (2021). Early Detection of Parkinson’s Disease: An Intelligent Diagnostic Approach. In pp. 61-95.

[38] Fitzgerald, E., Murphy, S., and Martinson, H.A. (2019). Alpha-Synuclein Pathology and the Role of the Microbiota in Parkinson’s Disease. Frontiers in Neuroscience 13. 10.3389/fnins.2019.00369.

[39] Konings, B., Villatoro, L., Van den Eynde, J., Barahona, G., Burns, R., McKnight, M., Hui, K., Yenokyan, G., Tack, J., and Pasricha, P.J. (2023). Gastrointestinal syndromes preceding a diagnosis of Parkinson’s disease: testing Braak’s hypothesis using a nationwide database for comparison with Alzheimer’s disease and cerebrovascular diseases. Gut 72, 2103-2111. 10.1136/gutjnl-2023-329685.

[40] Jan, A., Gonçalves, N.P., Vaegter, C.B., Jensen, P.H., and Ferreira, N. (2021). The Prion-Like Spreading of Alpha-Synuclein in Parkinson’s Disease: Update on Models and Hypotheses. International Journal of Molecular Sciences 22, 8338.

[41] Xu, J., Wang, L., Chen, X., and Le, W. (2022). New Understanding on the Pathophysiology and Treatment of Constipation in Parkinson’s Disease. Front Aging Neurosci 14, 917499. 10.3389/fnagi.2022.917499.

[42] Li, Z., Liang, H., Hu, Y., Lu, L., Zheng, C., Fan, Y., Wu, B., Zou, T., Luo, X., Zhang, X., et al. (2023). Gut bacterial profiles in Parkinson’s disease: A systematic review. CNS Neuroscience & Therapeutics 29, 140-157. https://doi.org/10.1111/cns.13990.

[43] Kim, J.H., Oh, J.K., Kim, Y.H., Kwon, M.J., Kim, J.H., and Choi, H.G. (2022). Association between Proton Pump Inhibitor Use and Parkinson’s Disease in a Korean Population. Pharmaceuticals (Basel) 15. 10.3390/ph15030327.

[44] Perez-Pardo, P., Kliest, T., Dodiya, H.B., Broersen, L.M., Garssen, J., Keshavarzian, A., and Kraneveld, A.D. (2017). The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur J Pharmacol 817, 86-95. 10.1016/j.ejphar.2017.05.042.

[45] Perez-Pardo, P., Hartog, M., Garssen, J., and Kraneveld, A.D. (2017). Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson’s Disease. Curr Behav Neurosci Rep 4, 361-368. 10.1007/s40473-017-0129-2.

[46] Hamamah, S., Aghazarian, A., Nazaryan, A., Hajnal, A., and Covasa, M. (2022). Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 10. 10.3390/biomedicines10020436.

[47] Sampson, T.R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M.S., Shastri, G.G., Thron, T., Needham, B.D., Horvath, I., Debelius, J.W., et al. (2020). A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. Elife 9. 10.7554/eLife.53111.

[48] Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., and Shannon, K.M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov Disord 30, 1351-1360. 10.1002/mds.26307.

[49] Miller, A.L., Bessho, S., Grando, K., and Tükel, Ç. (2021). Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Frontiers in Immunology 12. 10.3389/fimmu.2021.638867.

[50] Xu, K., Sheng, S., and Zhang, F. (2023). Relationship Between Gut Bacteria and Levodopa Metabolism. Curr Neuropharmacol 21, 1536-1547. 10.2174/1570159×21666221019115716.

[51] Li, X., Feng, X., Sun, X., Hou, N., Han, F., and Liu, Y. (2022). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Frontiers in Aging Neuroscience 14. 10.3389/fnagi.2022.937486.

[52] Armstrong, R.A. (2013). What causes Alzheimer’s disease? Folia Neuropathologica 51, 169-188.

[53] Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7, 13537. 10.1038/s41598-017-13601-y.

[54] He, Y., Li, B., Sun, D., and Chen, S. (2020). Gut Microbiota: Implications in Alzheimer’s Disease. J Clin Med 9. 10.3390/jcm9072042.

[55] Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U.P., Paghera, B., Muscio, C., et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49, 60-68. 10.1016/j.neurobiolaging.2016.08.019.

[56] Wiatrak, B., Balon, K., Jawień, P., Bednarz, D., Jęśkowiak, I., and Szeląg, A. (2022). The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer’s Disease. International Journal of Molecular Sciences 23, 4862.

[57] Bairamian, D., Sha, S., Rolhion, N., Sokol, H., Dorothée, G., Lemere, C.A., and Krantic, S. (2022). Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegener 17, 19. 10.1186/s13024-022-00522-2.

[58] Das, T.K., Blasco-Conesa, M.P., Korf, J., Honarpisheh, P., Chapman, M.R., and Ganesh, B.P. (2022). Bacterial Amyloid Curli Associated Gut Epithelial Neuroendocrine Activation Predominantly Observed in Alzheimer’s Disease Mice with Central Amyloid-β Pathology. J Alzheimers Dis 88, 191-205. 10.3233/jad-220106.

[59]Minter, M.R., Hinterleitner, R., Meisel, M., Zhang, C., Leone, V., Zhang, X., Oyler-Castrillo, P., Zhang, X., Musch, M.W., Shen, X., et al. (2017). Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Scientific Reports 7, 10411. 10.1038/s41598-017-11047-w.

[60] Korn, T. (2008). Pathophysiology of multiple sclerosis. Journal of neurology 255, 2-6.

[61] Wiesel, P.H., Norton, C., Glickman, S., and Kamm, M.A. (2001). Pathophysiology and management of bowel dysfunction in multiple sclerosis. European journal of gastroenterology & hepatology 13, 441-448.

[62] Høglund, R.A., and Maghazachi, A.A. (2014). Multiple sclerosis and the role of immune cells. World J Exp Med 4, 27-37. 10.5493/wjem.v4.i3.27.

[63] Hauser, S.L., and Cree, B.A.C. (2020). Treatment of Multiple Sclerosis: A Review. Am J Med 133, 1380-1390.e1382. 10.1016/j.amjmed.2020.05.049.

[64] Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., Patel, B., Mazzola, M.A., Liu, S., Glanz, B.L., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7, 12015. 10.1038/ncomms12015.

[65] Preiningerova, J.L., Jiraskova Zakostelska, Z., Srinivasan, A., Ticha, V., Kovarova, I., Kleinova, P., Tlaskalova-Hogenova, H., and Kubala Havrdova, E. (2022). Multiple Sclerosis and Microbiome. Biomolecules 12. 10.3390/biom12030433.

[66] Berer, K., Gerdes, L.A., Cekanaviciute, E., Jia, X., Xiao, L., Xia, Z., Liu, C., Klotz, L., Stauffer, U., Baranzini, S.E., et al. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 114, 10719-10724. 10.1073/pnas.1711233114.

[67] Buscarinu, M.C., Fornasiero, A., Romano, S., Ferraldeschi, M., Mechelli, R., Reniè, R., Morena, E., Romano, C., Pellicciari, G., Landi, A.C., et al. (2019). The Contribution of Gut Barrier Changes to Multiple Sclerosis Pathophysiology. Frontiers in Immunology 10. 10.3389/fimmu.2019.01916.

[1] Di Tommaso, N., Gasbarrini, A., and Ponziani, F.R. (2021). Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health 18. 10.3390/ijerph182312836.

[2] Liddle, R.A. (2018). Interactions of Gut Endocrine Cells with Epithelium and Neurons. Compr Physiol 8, 1019-1030. 10.1002/cphy.c170044.

[3] Annahazi, A., and Schemann, M. (2020). The enteric nervous system: “A little brain in the gut”. Neuroforum 26, 31-42. doi:10.1515/nf-2019-0027.

[4] Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9, 286-294. 10.1038/nrgastro.2012.32.

[5] Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res 1693, 128-133. 10.1016/j.brainres.2018.03.015.

[6] Layer, P., Andresen, V., Allescher, H., Bischoff, S., Claßen, M., Elsenbruch, S., Freitag, M., Frieling, T., Gebhard, M., and Goebel-Stengel, M. (2021). Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM)–Juni 2021–AWMF-Registriernummer: 021/016. Zeitschrift für Gastroenterologie 59, 1323-1415.

[7] Wauters, L., Dickman, R., Drug, V., Mulak, A., Serra, J., Enck, P., Tack, J., Accarino, A., Barbara, G., Bor, S., et al. (2021). United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United European Gastroenterol J 9, 307-331. 10.1002/ueg2.12061.

[8] Brown, G., Hoedt, E.C., Keely, S., Shah, A., Walker, M.M., Holtmann, G., and Talley, N.J. (2022). Role of the duodenal microbiota in functional dyspepsia. Neurogastroenterol Motil 34, e14372. 10.1111/nmo.14372.

[9] Leifeld, L., Germer, C.-T., Böhm, S., Dumoulin, F.L., Frieling, T., Kreis, M., Meining, A., Labenz, J., Lock, J.F., and Ritz, J.-P. (2022). S3-leitlinie divertikelkrankheit/divertikulitis–gemeinsame leitlinie der deutschen gesellschaft für gastroenterologie, verdauungs-und stoffwechselkrankheiten (DGVS) und der deutschen gesellschaft für allgemein-und viszeralchirurgie (DGAV). Zeitschrift für Gastroenterologie 60, 613-688.

[10] Rustom, L.B.O., and Sharara, A.I. (2018). The Natural History of Colonic Diverticulosis: Much Ado about Nothing? Inflamm Intest Dis 3, 69-74. 10.1159/000490054.

[11] Elisei, W., and Tursi, A. (2016). Recent advances in the treatment of colonic diverticular disease and prevention of acute diverticulitis. Ann Gastroenterol 29, 24-32.

[12] Maconi, G. (2017). Diagnosis of symptomatic uncomplicated diverticular disease and the role of Rifaximin in management. Acta Biomed 88, 25-32. 10.23750/abm.v88i1.6360.

[13] Barbara, G., Scaioli, E., Barbaro, M.R., Biagi, E., Laghi, L., Cremon, C., Marasco, G., Colecchia, A., Picone, G., Salfi, N., et al. (2017). Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut 66, 1252-1261. 10.1136/gutjnl-2016-312377.

[14] Grace, E., Shaw, C., Whelan, K., and Andreyev, H.J. (2013). Review article: small intestinal bacterial overgrowth–prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther 38, 674-688. 10.1111/apt.12456.

[15] Achufusi, T.G.O., Sharma, A., Zamora, E.A., and Manocha, D. (2020). Small Intestinal Bacterial Overgrowth: Comprehensive Review of Diagnosis, Prevention, and Treatment Methods. Cureus 12, e8860. 10.7759/cureus.8860.

[16] Ghoshal, U.C., and Srivastava, D. (2014). Irritable bowel syndrome and small intestinal bacterial overgrowth: meaningful association or unnecessary hype. World J Gastroenterol 20, 2482-2491. 10.3748/wjg.v20.i10.2482.

[17] Madisch, A., Koop, H., Miehlke, S., Leers, J., Lorenz, P., Lynen, P., Jansen, O.P., Schilling10, D., Labenz11, J., and Allescher, H.-D. (2023). S2k-Leitlinie Gastroösophageale Refluxkrankheit und eosinophile Ösophagitis der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS). Z Gastroenterol.

[18] Okereke, I., Hamilton, C., Wenholz, A., Jala, V., Giang, T., Reynolds, S., Miller, A., and Pyles, R. (2019). Associations of the microbiome and esophageal disease. J Thorac Dis 11, S1588-s1593. 10.21037/jtd.2019.05.82.

[19] Park, C.H., and Lee, S.K. (2020). Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic Review. J Neurogastroenterol Motil 26, 171-179. 10.5056/jnm19240.

[20] D’Souza, S.M., Houston, K., Keenan, L., Yoo, B.S., Parekh, P.J., and Johnson, D.A. (2021). Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: A paradigm shift from acid to bacteria? World J Gastroenterol 27, 2054-2072. 10.3748/wjg.v27.i18.2054.

[21] Antoniou, S.A., Antoniou, G.A., Koutras, C., and Antoniou, A.I. (2012). Endoscopy and laparoscopy: a historical aspect of medical terminology. Surg Endosc 26, 3650-3654. 10.1007/s00464-012-2389-y.

[22] Caminero, A., Meisel, M., Jabri, B., and Verdu, E.F. (2019). Mechanisms by which gut microorganisms influence food sensitivities. Nat Rev Gastroenterol Hepatol 16, 7-18. 10.1038/s41575-018-0064-z.

[23] Tishkoff, S.A., Reed, F.A., Ranciaro, A., Voight, B.F., Babbitt, C.C., Silverman, J.S., Powell, K., Mortensen, H.M., Hirbo, J.B., Osman, M., et al. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics 39, 31-40. 10.1038/ng1946.

[24] Wanes, D., Husein, D.M., and Naim, H.Y. (2019). Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients 11. 10.3390/nu11020461.

[25] Mattar, R., de Campos Mazo, D.F., and Carrilho, F.J. (2012). Lactose intolerance: diagnosis, genetic, and clinical factors. Clin Exp Gastroenterol 5, 113-121. 10.2147/ceg.S32368.

[26] Wong, D. (2005). Hereditary fructose intolerance. Mol Genet Metab 85, 165-167. 10.1016/j.ymgme.2005.05.001.

[27] Ledochowski, M., Bair, H., and Gufler, V. (2005). Fructosemalabsorption. Ernährung. Nutrition 29, 157-165.

[28] Ledochowski, M., Widner, B., Bair, H., Probst, T., and Fuchs, D. (2000). Fructose- and sorbitol-reduced diet improves mood and gastrointestinal disturbances in fructose malabsorbers. Scand J Gastroenterol 35, 1048-1052. 10.1080/003655200451162.

[29] Maintz, L., Bieber, T., and Novak, N. (2006). Die verschiedenen Gesichter der Histaminintoleranz. Dtsch Arztebl 103, 3477-3483.

[30] Zhao, Y., Zhang, X., Jin, H., Chen, L., Ji, J., and Zhang, Z. (2022). Histamine Intolerance-A Kind of Pseudoallergic Reaction. Biomolecules 12. 10.3390/biom12030454.

[31] Shulpekova, Y.O., Nechaev, V.M., Popova, I.R., Deeva, T.A., Kopylov, A.T., Malsagova, K.A., Kaysheva, A.L., and Ivashkin, V.T. (2021). Food Intolerance: The Role of Histamine. Nutrients 13. 10.3390/nu13093207.

[32] Schnedl, W.J., and Enko, D. (2021). Histamine Intolerance Originates in the Gut. Nutrients 13. 10.3390/nu13041262.

[33] Maintz, L., and Novak, N. (2007). Histamine and histamine intolerance. Am J Clin Nutr 85, 1185-1196. 10.1093/ajcn/85.5.1185.

[34] Horton, J.R., Sawada, K., Nishibori, M., and Cheng, X. (2005). Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J Mol Biol 353, 334-344. 10.1016/j.jmb.2005.08.040.

[35] Turnbull, J.L., Adams, H.N., and Gorard, D.A. (2015). Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther 41, 3-25. 10.1111/apt.12984.

[36] Unhapipatpong, C., Julanon, N., Krikeerati, T., Vichara-Anont, I., and Sompornrattanaphan, M. (2022). Adult IgE-mediated food allergy is on the rise: A review of phenotypes, pathophysiologic mechanisms, diagnosis, and advances in management. Asian Pac J Allergy Immunol 40, 308-320. 10.12932/ap-101122-1499.

[37] Nance, C.L., Deniskin, R., Diaz, V.C., Paul, M., Anvari, S., and Anagnostou, A. (2020). The Role of the Microbiome in Food Allergy: A Review. Children (Basel) 7. 10.3390/children7060050.

[38] Lee, K.H., Song, Y., Wu, W., Yu, K., and Zhang, G. (2020). The gut microbiota, environmental factors, and links to the development of food allergy. Clin Mol Allergy 18, 5. 10.1186/s12948-020-00120-x.

[39] Valenta, R., Hochwallner, H., Linhart, B., and Pahr, S. (2015). Food allergies: the basics. Gastroenterology 148, 1120-1131.e1124. 10.1053/j.gastro.2015.02.006.

[40] Kimura, M., Oh, S., Narabayashi, S., and Taguchi, T. (2012). Usefulness of lymphocyte stimulation test for the diagnosis of intestinal cow’s milk allergy in infants. Int Arch Allergy Immunol 157, 58-64. 10.1159/000323896.

[41] Felber, J., Bläker, H., Fischbach, W., Koletzko, S., Laaß, M., Lachmann, N., Lorenz, P., Lynen, P., Reese, I., and Scherf, K. (2022). Aktualisierte S2k-leitlinie zöliakie der deutschen gesellschaft für gastroenterologie, verdauungs-und stoffwechselkrankheiten (DGVS). Zeitschrift für Gastroenterologie 60, 790-856.

[42] Al-Toma, A., Volta, U., Auricchio, R., Castillejo, G., Sanders, D.S., Cellier, C., Mulder, C.J., and Lundin, K.E.A. (2019). European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J 7, 583-613. 10.1177/2050640619844125.

[43] Husby, S., Koletzko, S., Korponay-Szabó, I., Kurppa, K., Mearin, M.L., Ribes-Koninckx, C., Shamir, R., Troncone, R., Auricchio, R., Castillejo, G., et al. (2020). European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr 70, 141-156. 10.1097/mpg.0000000000002497.

[44] Valitutti, F., Cucchiara, S., and Fasano, A. (2019). Celiac Disease and the Microbiome. Nutrients 11. 10.3390/nu11102403.

[45] Calabriso, N., Scoditti, E., Massaro, M., Maffia, M., Chieppa, M., Laddomada, B., and Carluccio, M.A. (2022). Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 14. 10.3390/nu14132679.

[46] Caminero, A., and Verdu, E.F. (2019). Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. Gastroenterol Hepatol 42, 449-457. 10.1016/j.gastrohep.2019.04.001.

[47] Friedt, M., Braegger, C.P., and Behrens, R. (2008). Chronisch-entzündliche Darmerkrankungen (CED). Pädiatrische Gastroenterologie, Hepatologie und Ernährung, 274-292.

[48] Abraham, C., and Medzhitov, R. (2011). Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729-1737. 10.1053/j.gastro.2011.02.012.

[49] Kucharzik, T., Dignass, A., Atreya, R., Bokemeyer, B., Esters, P., Herrlinger, K., Kannengiesser, K., Kienle, P., Langhorst, J., Lügering, A., et al. (2024). Aktualisierte S3-Leitlinie Colitis ulcerosa (Version 6.2). Z Gastroenterol 62, 769-858. 10.1055/a-2271-0994.

[50] Sturm, A., Atreya, R., Bettenworth, D., Bokemeyer, B., Dignaß, A., Ehehalt, R., Germer, C., Grunert, P.C., Helwig, U., and Herrlinger, K. (2022). Aktualisierte S3-Leitlinie „Diagnostik und Therapie des Morbus Crohn “der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS)–August 2021–AWMF-Registernummer: 021-004. Zeitschrift für Gastroenterologie 60, 332-418.

[51] Patangia, D.V., Anthony Ryan, C., Dempsey, E., Paul Ross, R., and Stanton, C. (2022). Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11, e1260. 10.1002/mbo3.1260.

[52] Ramirez, J., Guarner, F., Bustos Fernandez, L., Maruy, A., Sdepanian, V.L., and Cohen, H. (2020). Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol 10, 572912. 10.3389/fcimb.2020.572912.

[53] Goodman, C., Keating, G., Georgousopoulou, E., Hespe, C., and Levett, K. (2021). Probiotics for the prevention of antibiotic-associated diarrhoea: a systematic review and meta-analysis. BMJ Open 11, e043054. 10.1136/bmjopen-2020-043054.

[54] Lübbert, C., John, E., and von Müller, L. (2014). Clostridium difficile infection: guideline-based diagnosis and treatment. Dtsch Arztebl Int 111, 723-731. 10.3238/arztebl.2014.0723.

[55] Kelly, C.R., Fischer, M., Allegretti, J.R., LaPlante, K., Stewart, D.B., Limketkai, B.N., and Stollman, N.H. (2021). ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am J Gastroenterol 116, 1124-1147. 10.14309/ajg.0000000000001278.

[56] Singh, T., Bedi, P., Bumrah, K., Singh, J., Rai, M., and Seelam, S. (2019). Updates in Treatment of Recurrent Clostridium difficile Infection. J Clin Med Res 11, 465-471. 10.14740/jocmr3854.

[57] Liggett, M., and Alam, H. (2023). Management of Severe Colitis and Toxic Megacolon. Clinics in Colon and Rectal Surgery. 10.1055/s-0043-1777665.

[58] Giddings, S.L., Stevens, A.M., and Leung, D.T. (2016). Traveler’s Diarrhea. Med Clin North Am 100, 317-330. 10.1016/j.mcna.2015.08.017.

[59] Travelers‘ Diarrhea. (2022). https://wwwnc.cdc.gov/travel/page/travelers-diarrhea.

[60] DuPont, H.L., Ericsson, C.D., Farthing, M.J., Gorbach, S., Pickering, L.K., Rombo, L., Steffen, R., and Weinke, T. (2009). Expert review of the evidence base for prevention of travelers‘ diarrhea. J Travel Med 16, 149-160. 10.1111/j.1708-8305.2008.00299.x.

[61] Bae, J.M. (2018). Prophylactic efficacy of probiotics on travelers‘ diarrhea: an adaptive meta-analysis of randomized controlled trials. Epidemiol Health 40, e2018043. 10.4178/epih.e2018043.